$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Intermolecular Interaction Between Cry2Aa and Cyt1Aa and Its Effect on Larvicidal Activity Against Culex quinquefasciatus 원문보기

Journal of microbiology and biotechnology, v.23 no.8, 2013년, pp.1107 - 1115  

Bideshi, Dennis K. (Department of Entomology, University of California) ,  Waldrop, Greer (Department of Biology, Undergraduate Program in Molecular, Cellular, and Developmental Biology, University of Louisville) ,  Fernandez-Luna, Maria Teresa (Department of Entomology, University of California) ,  Diaz-Mendoza, Mercedes (Department of Entomology, University of California) ,  Wirth, Margaret C. (Department of Entomology, University of California) ,  Johnson, Jeffrey J. (Department of Entomology, University of California) ,  Park, Hyun-Woo (Department of Entomology, University of California) ,  Federici, Brian A. (Department of Entomology, University of California)

Abstract AI-Helper 아이콘AI-Helper

The Cyt1Aa protein of Bacillus thuringiensis susbp. israelensis elaborates demonstrable toxicity to mosquito larvae, but more importantly, it enhances the larvicidal activity of this species Cry proteins (Cry11Aa, Cry4Aa, and Cry4Ba) and delays the phenotypic expression of resistance to these that h...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

대상 데이터

  • At least 10 cells obtained from each replicate assay were selected for further microscopic analysis. Tissues and isolated cells were observed with the Nikon SM7800 and Leica DMRE fluorescent microscopes, respectively. At least three replicate assays were performed in each of these studies.

이론/모형

  • 1 N HCl, and then centrifuged at 1,000 ×g for 5 min to pellet particulate undissolved crystals. The solution was dialyzed in PBS overnight, and total protein concentration was determined by the Bradford method[1]. Cyt1Aa in PBS (0.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. 

  2. Bravo A, Gill SS, Soberon M. 2007. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon. 15: 423-435. 

  3. Butko P. 2003. Cytolytic toxin Cyt1A and its mechanism of membrane damage: data and hypothesis. Appl. Environ. Microbiol. 69: 2415-2422. 

  4. Crickmore N, Bone EJ, Williams JA, Ellar DJ. 1995. Contribution of the individual components of the $\delta$ -endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis. FEMS Microbiol. Lett. 131: 249-254. 

  5. Diaz-Mendoza M, Bideshi DK, Federici BA. 2012. A 54-kDa protein encoded by pBtoxis is required for parasporal body structural integrity in Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 194: 1562-1571. 

  6. Federici BA, Park HW, Bideshi DK, Wirth MC, Johnson JJ, Sakano Y, et al. 2007. Developing recombinant bacteria for control of mosquito larvae. J. Am. Mosq. Control Assoc. 23: 164-175. 

  7. Federici BA, Park HW, Sakano Y. 2006. Insecticidal protein crystals of Bacillus thuringiensis, pp. 195-236. In Shively JM (ed.). Microbiology Monographs Inclusions in Prokaryotes. Springer-Verlag, Berlin, Heidelberg. 

  8. Fernandez LE, Perez C, Segovia L, Rodriguez MH, Gill SS, Bravo A, et al. 2005. Cry11Aa toxin from Bacillus thuringiensis binds its receptor in Aedes aegypti mosquito larvae through loop a-8 of domain II. FEBS Lett. 579: 3508-3514. 

  9. Finney D. 1971. Probit Analysis. Cambridge University Press, Cambridge, England. 

  10. Ge B, Bideshi D, Moar WJ, Federici BA. 1998. Differential effects of helper proteins encoded by the cry2A and cry11A operons on the formation of Cry2A inclusions in Bacillus thuringiensis. FEMS Microbiol. Lett. 165: 35-41. 

  11. Georghiou GP, Wirth MC. 1997. Influence of exposure to single versus multiple toxins of Bacillus thuringiensis subsp. israelensis on development of resistance in the mosquito Culex quinquefasciatus (Diptera: Culicidae). Appl. Environ. Microbiol. 63: 1095-1101. 

  12. Guerchicoff A, Delecluse A, Rubinstein CP. 2001. The Bacillus thuringiensis cyt genes for hemolytic endotoxin constitute a gene family. Appl. Environ. Microbiol. 67: 1090-1096. 

  13. Ibarra J, Federici BA. 1986. Isolation of a relatively nontoxic 65-kilodalton protein inclusion from the parasporal body of Bacillus thuringiensis subsp. israelensis. J. Bacteriol. 165: 527-533. 

  14. Knowles BH, Blatt MR, Tester M, Horsnell JM, Caroll J, Menestrina G, et al. 1992. A cytolytic delta-endotoxin from Bacillus thuringiensis var. israelensis forms cation-selective channels in planar lipid bilayers. FEBS Lett. 244: 259-262. 

  15. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. 

  16. Lereclus A, Arantes O, Chaufaux J, Lecadet MM. 1989. Transformation and expression of a cloned d-endotoxin gene in Bacillus thuringiensis. FEMS Microbiol. Lett. 60: 211-218. 

  17. Li K, Pandelakis AK, Ellar DJ. 1996. Structure of the mosquitocidal d-endotoxin CytB from Bacillus thuringiensis sp. kyushuensis and implications for membrane pore formation. J. Mol. Biol. 257: 129-152. 

  18. Li X, Nevels KJ, Gryczynski Z, Gryczynski I, Pusztai-Carey M, Xie D, et al. 2009. A molecular dynamic model of the Bt toxin Cyt1A and its validation by resonance energy transfer. Biophys. Chem. 144: 53-61. 

  19. Manceva SD, Pusztai-Carey M, Russo PS, Butko P. 2005. A detergent-like mechanism of action of the cytolytic toxin Cyt1A from Bacillus thuringiensis var. israelensis. Biochemistry 44: 589-597. 

  20. Meyer SK, Tabashnik BE, Liu YB, Wirth MC, Federici BA. 2001. Cyt1A from Bacillus thuringiensis lacks toxicity to susceptible and resistant larvae of diamondback moth (Plutella xylostella) and pink bollworm (Pectinophora gossypiella). Appl. Environ. Microbiol. 67: 462-463. 

  21. Moar WJ, Trumble JT, Hice RH, Backman PA. 1994. Insecticidal activity of the CryIIA protein form the NRD-12 isolates of Bacillus thuringiensis subsp. kurstaki expressed in Escherichia coli and Bacillus thuringiensis and in a leafcolonizing strain of Bacillus cereus. Appl. Environ. Microbiol. 3: 896-902. 

  22. Morse RJ, Yamamoto T, Stroud RM. 2001. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure 9: 409-417. 

  23. Park HW, Bideshi DK, Federici BA. 2003. Recombinant strain of Bacillus thuringiensis producing Cyt1A, Cry11B and the Bacillus sphaericus toxin. Appl. Environ. Microbiol. 69: 1331-1334. 

  24. Park HW, Bideshi DK, Wirth MC, Johnson JJ, Walton WE, Federici BA. 2005. Recombinant larvicidal bacteria with markedly improved efficacy against Culex vectors of West Nile virus. Am. J. Trop. Med. Hyg. 72: 732-738. 

  25. Perez C, Fernandez LE, Sun L, Folch LJ, Gill SS, Soberon M, et al. 2005. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11A toxin by functioning as a membranebound receptor. Proc. Natl. Acad. Sci. USA 102: 18303-18308. 

  26. Poncet S, Delecluse A, Klier A, Rapoport G. 1994. Evaluation of synergistic interactions among CryIVA, CryIVB, and CryIVD toxic components of Bacillus thuringiensis subsp. israelensis crystals. J. Invertebr. Pathol. 66: 131-135. 

  27. Roh JY, Choi JY, Li MS, Jin BR, Je JH. 2007. Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J. Microbiol. Biotechnol. 17: 547-549. 

  28. Schnepf E, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J, et al. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806. 

  29. Soberon M, Gill SS, Bravo A. 2009. Signaling versus punching holes: how do Bacillus thuringiensis toxins kill insect midgut cells? Cell. Mol. Life Sci. 66: 1337-1349. 

  30. Swiecicka I. 2008. Natural occurrence of Bacillus thuringiensis and Bacillus cereus in eukaryotic organisms: a case of symbiosis. Biocontrol Sci. Technol. 18: 221-239. 

  31. Tabashnik BE. 1992. Evaluation of synergism among Bacillus thuringiensis toxins. Appl. Environ. Microbiol. 58: 3343-3346. 

  32. Thomas WL, Ellar DJ. 1983. Mechanism of action of Bacillus thuringiensis var. israelensis insecticidal delta-endotoxins. FEBS Lett. 154: 362-368. 

  33. Widner WR, Whiteley HR. 1989. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subsp. kurstaki possess different host range specificities. J. Bacteriol. 171: 965-974. 

  34. Widner WR, Whiteley HR. 1990. Location of the dipteran specificity region in a lepidopteran-dipteran crystal protein from Bacillus thuringiensis. J. Bacteriol. 172: 2826-2832. 

  35. Wirth MC, Delecluse A, Walton WE. 2004. Laboratory selection for resistance to Bacillus thuringiensis subsp. jegathesan or a component toxin, Cry11B, in Culex quinquefasciatus (Diptera: Culicidae). J. Med. Entomol. 41: 435-441. 

  36. Wirth MC, Geroghiou GP, Federici BA. 1997. Cyt1A enables CryIVD endotoxins of Bacillus thuringiensis to overcome high levels of CryIV resistance in the mosquito Culex quinquefasciatus. Proc. Natl. Acad. Sci. USA 94: 10536-10540. 

  37. Wirth MC, Park HW, Walton WE, Federici BA. 2005. Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquefasciatus. Appl. Environ. Microbiol. 71: 185-189. 

  38. Wirth MC, Jiannino JA, Federici BA, Walton WE. 2004. Synergy between toxins of Bacillus thuringiensis subsp. israelensis and Bacillus sphaericus. J. Med. Entomol. 41: 935-941. 

  39. Wu D, Federici BA. 1993. The 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. J. Bacteriol. 175: 5276-5280. 

  40. Zghal R Z, T ounsi S, J aoua J . 2006. C haracterization o f a Cry4Ba-type gene of Bacillus thuringiensis israelensis and evidence of the synergistic larvicidal activity of its encoded protein Cry2A d-endotoxin of B. thuringiensis kurstaki on Culex pipiens (common house mosquito). Biotechnol. Appl. Biochem. 44: 19-25. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로