$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 마이크로캡슐이 내재된 자기치유 아스팔트에 관한 연구
Study on Self-Healing Asphalt Containing Microcapsule 원문보기

Elastomers and composites = 엘라스토머 및 콤포지트, v.48 no.3, 2013년, pp.232 - 240  

권영진 (수원대학교 신소재공학과) ,  홍영근 (수원대학교 신소재공학과)

초록
AI-Helper 아이콘AI-Helper

자기치유형 아스팔트를 구현하기 위하여 치유제로 디메틸페놀을 사용하여 내부층을 이루고 바깥층이 멜라민 수지로 이루어진 마이크로켑슐을 제조하였다. 마이크로캡슐이 내재된 아스팔트는 일반 아스팔트에 비해 높은 기계적 성질을 나타내었다. 그대로 길어질수록 마이크로캡슐이 함유된 아스팔트는 함유되지 않은 아스팔트보다 더 높은 충격 강도를 나타내었으며 15일의 휴식기간에 최초의 물성을 회복하였다. 이는 X-선 사진에서 보듯이, 깨어진 아스팔트 경계면에 있던 마이크로캡슐이 아스팔트와 동시에 깨지면서 캡슐 안에 있던 단량체인 디메틸페놀이 흘러나와 외부의 반응촉매 투입 없이 아스팔트 자체의 금속촉매와 아민촉매 및 공기 중의 산소분자에 의하여 열가소성 고강성 플라스틱 고분자인 폴리페닐렌옥사이드가 자율적으로 중합되면서 깨어진 아스팔트의 경계면을 메우면서 최초의 물성으로 복구된 것이다. 이는 마이크로캡슐을 함유한 아스팔트는 자가복구능을 갖고 있음을 의미한다.

Abstract AI-Helper 아이콘AI-Helper

Microcapsules having healing agent were prepared in which 2,6-dimethylphenol (DMP) as a healing agent forms the core and melamine/formaldehyde resin forms the shell. Microcapsule-contained asphalts showed better mechanical properties than non-contained ones. And as the rest time passed the impact st...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 다음은 휴식기간(치유기간)에 따른 충격강도 수치를 가지고 아스팔트의 자기치유능을 알아 보았다. DMP가 내용물인 마이크로캡슐을 함유한 아스팔트(Figure 10, a)는 1일 후 87.
  • 35 본 연구는 단량체 2,6-dimethylphenol(DMP)과 SBS(styrene- buta- diene-styrene triblock copolymer) 고무를 치유제로 삼고 이들을 내용물(core)로 하여 마이크로캡슐을 제조하고, 이를 아스팔트 균열 부분에 도입하여 아스팔트 자가치유에 대해 알아보았다. 여기서 DMP는 아스팔트 내에 있는 금속과 아민화합물, 그리고 공기 중의 산소분자에 의해 polyphenyleneoxide(PPO)로 중합되면서 아스팔트 균열 부분을 봉합, 치유할 수 있을 것으로 보고, 본 연구에서 이를 확인하고자 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
자기치유 물질이란 무엇인가? 자기치유 물질이란 스마트 재료의 한 부류로서 오랜 사용 중에 나타나는 손상을 치유하여 원 상태로 복구시킬 수 있는 능력 체계를 갖춘 물질을 말한다.2 이 구상은 생물들은 상처를 입었을 경우 이를 자체적으로 치유한다는 데서 얻어졌다.
아스팔드의 작은 손상을 치유할 수 있는 능력은 어떠한 장점을 가지는가? 보통 균열이 발생하면 사람의 손으로 수리되나 미세균열은 작아서 탐지가 어렵다. 물질이 사용 중에 일어나는 작은 손상을 치유할 수 있는 능력을 구조적으로 가지고 있다면 손상 수리비용과 함께 사용기간이 연장되어 생산비용도 크게 줄일 수 있을 것이며, 결과적으로 CO2 발생량을 줄일 수 있을 것이다.
자기치유 물질의 구상은 어디로 부터 얻어졌는가? 자기치유 물질이란 스마트 재료의 한 부류로서 오랜 사용 중에 나타나는 손상을 치유하여 원 상태로 복구시킬 수 있는 능력 체계를 갖춘 물질을 말한다.2 이 구상은 생물들은 상처를 입었을 경우 이를 자체적으로 치유한다는 데서 얻어졌다. 물질에 균열이나 다른 형태의 손상이 일어나면 여러 물성이 바꿔지고 종국엔 물질 파괴를 일으킨다.
질의응답 정보가 도움이 되었나요?

참고문헌 (39)

  1. Top 10 Most Promising Technology Trends 2013, from the World Economic Forum, Google, posted Feb 14, 2013. 

  2. Self-healing Material, Wikipedia. 

  3. J. H. Collins and M. G. Bouldin, "Long and Short Term Stability of Straight and Polymer Modified Asphalts", Rubber World, 206, 32 (1992). 

  4. X. Lu and U. Isacsson, "Compatibility and Storage Stability of SBS Copolymer Modified Bitumen", Mater. Struct., 30, 618 (1997). 

  5. P. Jew, J. A. Shimizu, M. Svazic and R. T. Woodhams, "Polyethylene-Modified Bitumen for Paving Applications", J. Appl. Polym. Sci., 31, 2685 (1986). 

  6. O. Gonzalez, M. E. Munoz, A. Santamaria, M. Garcia-Morales, F. J. Navarro, and P. Partal, "Rheology and Stability of Bitumen/EVA blends", Eur. Polym. J., 40, 2365 (2004). 

  7. G. Polacco, S. Berlincioni, D. Biondi, J. Stastna, and L. Zanzotto, "Asphalt Modification with Different Polyethylene-Based Polymers", Eur. Polym. J., 41, 2831 (2005). 

  8. G. Wen, Y. Zhang, Y. Zhang, K. Sun, and Z. Chen, "Vulcanization Characteristics of Asphalt/SBS Blends in the Presence of Sulfur", J. Appl. Polym. Sci., 82, 989 (2001). 

  9. J. S. Chen and C. C. Huang, "Fundamental Characterization of SBS-modified Asphalt Mixed with Sulfur", J. Appl. Polym. Sci., 103, 2817 (2007). 

  10. A. Adedeji, T. Grunfelder, F. S. Bates, and C. W. Macosko, "Asphalt Modified by SBS Triblock Copolymer: Structures and Properties", Polym. Eng. Sci., 36, 1707 (1996). 

  11. Z. Li and J. Wu, "Potential Distribution Theorem of the Polymer-induced depletion between Colloidal Particles", J. Chem. Phys., 126, 144904 (2007). 

  12. C. Gogelein, G. Nagele, J. Buitenhuis, R. Tuinier, and J. K. G. Dhont, "Polymer Depletion-driven Cluster Aggregation and Initial Phase Separation in Charged Nanosized Colloids", J. Chem. Phys., 130, 204905 (2009). 

  13. S. Ramakrishnan, M. Fuchs, K.S. Schweizer, and C.F. Zukoski, "Entropy-driven Phase Transitions in Colloid-Polymer Suspensions", J. Chem. Phys., 116, 2201 (2002). 

  14. J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using Nanoparticles to Create Self-healing Composites", J. Chem. Phys., 1121, 5531 (2004). 

  15. S. Tyagi, J. Y. Lee, G. A. Buxton, and A. C. Balazs, "Using Nanocomposite Coating to Heal Surface Defects", Macromolecules, 37, 9160 (2004). 

  16. J. Y. Lee, Q. L. Zhang, T. Emricksas, and A. J. Crosby, "Nanoparticle Alignment and Repulsion during Failure of Glassy Polymer Nanocomposites", Macromolecules, 39, 7392 (2006). 

  17. S. R. White, N. R. Sottos, P. H. Geubelle, J. S. Moore, M. R. Kessler, S. R. Sriram, E. N. Brown, and S. Viswanathan, "Autonomic Healing of Polymer Composites", Nature, 409, 794 (2001). 

  18. E. N. Brown, M. R. Kessler, N. R. Sottos, and S. R. White, "In-situ Poly(urea-formaldehyde) Microencapsulation of Dicyclopentadiene", J. Microencapsulation, 20, 719 (2003). 

  19. E. N. Brown, S. R. White, and N. R. Sottos, "Microcapsule Induced Toughening in a Self-healing Polymer Composite", J. Mater. Sci., 39, 1703 (2004). 

  20. J. D. Rule, E. N. Brown, N. R. Sottos, S. R. White, and J. S. Moore, "Wax-protected Catalyst Microsheres for Efficient Self-healing Materials," Adv. Mater., 17, 205 (2005). 

  21. S. H. Cho, S.R. White, and P.V. Braun, "Self-Healing Polymer Coatings", Adv. Mater.. 21, 645 (2009). 

  22. C. M. Dry, "Self-repairing, Reinforced Matrix Materials", USP 7022179 (2006). 

  23. J. W. C. Pang and I. P. Bond, "A Hollow Fibre Reinforced Polymer Composite Encompassing Self-healing and Enhanced Damage Visibility", Compos. Sci Technol., 65, 1791 (2005). 

  24. R. S. Trask and I. P. Bond, "Biomimetic Self-healing of Advanced Composite Structures using Hollow Glass Fibres", Smart Mater. Struct., 15, 704 (2006). 

  25. X. Chen, M. A. Dam, K. Ono, A. Mal, H. Shen, S. R. Nutt, K. Sheran, and F. Wudl, "A Thermally Re-mendable Cross-linked Polymeric Material", Science, 295, 1698 (2002). 

  26. F. Wudl, X. Chen, USP 2004014933 (2004). 

  27. Y. L. Liu and Y. W. Chen, "Thermally Reversible Cross-linked Polyamides with High Toughness and Self-repairing Ability from Maleimide- and Furan- functionalized Aromatic Polyamides", Macromol. Chem. Phys., 208, 224 (2007). 

  28. Y. L. Liu and C. Y. Hsieh, "Crosslinked Epoxy Materials Exhibiting Thermal Remendability and Removability from Multifunctional Maleimide and Furan Compounds", J. Polym. Sci.: Part A: Polym. Chem., 44, 905 (2004). 

  29. E. B. Murphy, E. Bolanos, C. S. Hamann, F. Wudl, S. R. Nutt, and M. L. Auad, "Synthesis and Characterization of a Single-component Thermally Remendable Polymer Network", Macromolecules, 41, 5203 (2008). 

  30. J. S. Park, K. Takahashi, Z. Guo, Y. Wang, et al., "Towards Development of a Self-healing Composite using a Mendable Polymer and Resistive Heating", J. Compos. Mater., 42, 2869 (2008). 

  31. P. Cordier, F. Tournilhac, C. Soulie-Ziakovic, and L. Leibler, "Self-healing and Thermoreversible Rubber from Supramolecular Assembly", Nature, 451, 977 (2008). 

  32. K. P. Nair, V. Breedveld, and M. Weck, "Complementary Hydrogen-bonded Thermoreversible Polymer Networks with Tunable Properties", Macromolecules, 41, 3429 (2008). 

  33. L. L. Freitas and R. Stadler, "Thermoplastic Elastomers by Hydrogen Bonding. 3", Macromolecules, 20, 2478 (1987). 

  34. F. R. Kersey, D. M. Loveless, and S. L. Craig, "A Hybrid Polymer Gel with Controlled Rates of Cross-link Rupture and Self-repair", J. Royal Soc. Interface, 4, 373 (2007). 

  35. A. S. Hay, "Polymerization by Oxidative Coupling: Discovery and Commercialization of PPO and Noryl Resins", J. Polym. Sci.: Part A: Polym. Chem., 36, 505 (1998). 

  36. J. Read and D. Whiteoak, "The Shell Bitumen Handbook", Shell, London (2003). 

  37. S. Y. Lee, S. H. Mun, and Y. K. Hong, "Modification of Asphalt by in-situ Polymerization", Elast. Compos., 46, 257 (2011). 

  38. F. E. Karasz and J. M. O'Reilly, "Thermal Properties of Poly(2,6-dimethyl phenylene ether)", J. Polym. Sci., Part B: Polym. Lett., 3, 561 (1965). 

  39. W. A. Butte, C. C. Price, and R. E. Hughes, "Crystalline Poly(2,6-zylenol)", J. Polym. Sci., 61, S28 (1962). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로