$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

바이오디젤용 지질 생산을 위한 미세조류 배양에서 환경 스트레스 조건의 활용 전략
Environmental Stress Strategies for Stimulating Lipid Production from Microalgae for Biodiesel 원문보기

공업화학 = Applied chemistry for engineering, v.25 no.6, 2014년, pp.553 - 558  

김가람 (명지대학교 환경에너지공학과) ,  무지타바 굴람 (명지대학교 환경에너지공학과) ,  리즈완 무하마드 (명지대학교 환경에너지공학과) ,  이기세 (명지대학교 환경에너지공학과)

초록
AI-Helper 아이콘AI-Helper

미세조류는 통상적인 에너지 작물에 비하여 빠른 성장속도와 높은 오일함량으로 바이오디젤 생산의 원료로 관심을 받고 있다. 미세조류의 지질은 주로 트리글리세라이드인 중성지방으로 에스테르교환반응을 통하여 바이오디젤인 지방산 메틸에스테르로 전환할 수 있다. 본 논문에서는 영양분의 제한, 염도 및 금속 성분의 변화와 같이 미세조류의 지질 생산을 촉진할 수 있는 배양환경 스트레스 조건의 영향들을 비교 고찰하였다. 사용하는 미세조류 종에 따라 스트레스에 대응하여 지질의 양이 변하거나 구성하는 지방산의 조성이 변화될 수 있다. 비록 질소원 제한 조건이 가장 많이 사용되는 지질생산 촉진조건이긴 하지만, 미세조류로부터 바이오디젤 생산성의 향상을 위해서는 그 외에도 영양분 과잉 조건, 염도의 변화, pH, 온도, 금속 성분 농도 변화 등의 다른 조건들도 고려되어야 한다.

Abstract AI-Helper 아이콘AI-Helper

Microalgae are a promising alternative feedstock for biodiesel production because their growth rates and oil contents are higher than those of conventional energy crops. Microalgal lipid is mainly triacylglyceride that can be converted to biodiesel as fatty acid methyl esters through trans-esterific...

주제어

참고문헌 (40)

  1. L. Brennan and P. Owende, Biofuels from microalgae: A review of technologies for production, processing, and extractions of biofuels and co-products, Renew. Sustain. Energy Rev., 14, 557-577 (2010). 

  2. X. Miao and Q. Wu, Biodiesel production from heterotrophic microalgal oil, Bioresour. Technol., 97, 841-846 (2006). 

  3. O. Perez-Garcia, F. M. E. Escalante, L. E. de-Bashan, and Y. Bashan, Heterotrophic cultures of microalgae: Metabolism and potential products, Water Res., 45, 11-36 (2011). 

  4. W. Zhang, P. Zhang, H. Sun, M. Chen, S. Lu, and P. Li, Effects of various organic carbon sources on the growth and biochemical composition of Chlorella pyrenoidosa, Bioresour. Technol., 174, 52-58 (2014). 

  5. E. A. Ehimen, Z. F. Sun, and C .G. Carrington, Variables affecting the in situ transrsterification of microalgae lipids, Fuel, 89, 677-684 (2010). 

  6. D. M. Mousdale, Biofuels: Biotechnology, Chemistry and Sustainable Development, CRC Press, FL, USA (2008). 

  7. C. Dayananda, R. Sarada, M. U. Rani, T. R. Shamala, and G. A. Ravishankar, Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharides in various media, Biomass Bioenergy, 31, 87-93 (2007). 

  8. M. J. Griffiths and S. T. L. Harrison, Lipid productivity as a key characteristic for choosing algal species for biodiesel production, J. Appl. Phycol., 21, 493-507 (2009). 

  9. L. Xin, H. Y. Hu, G. Ke, and Y. X. Sun, Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp., Bioresour. Technol., 101, 5494-5500 (2010). 

  10. C. T. Evans and C. Ratledge, Influence of nitrogen metabolism on lipid accumulation by Rhodosporidium toruloides CBS 14, J. Gen. Microbiol., 130, 1705-1710 (1984). 

  11. J. R. Benemann and W. J. Oswald, System and Economic Analysis of Microalgae Ponds for Conversion of $CO_2$ to Biomass. Technical Progress Report DEFG22-93PC93204, The Department of Energy, USA (1996). 

  12. A. Darzins, P. Pienkos, and L. Edye, Current Status and Potential for Algal Biofuels Production, IEA Bioenergy Task 39, Report T39-T2 6, NREL, USA (2010). 

  13. D. E. O. Santiago, H. F. Jin, and K. Lee, The influence of ferrous- complexed EDTA as a solubilization agent and its auto-regeneration on the removal of nitric oxide gas through the culture of green alga Scenedesmus sp., Process Biochem., 45, 1949-1953 (2010). 

  14. E. M. Grima, E. H. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti, Recovery of microalgal biomass and metabolite: Process options and economics, Biotechnol. Adv., 20, 491-515 (2003). 

  15. J.-R S. Ventura, B. Yang, Y. W. Lee, K. Lee, and D. Jahng, Life cycle analyses of $CO_2$ , energy, and cost for four different routes of microalgal bioenergy conversion, Bioresour. Technol., 137, 302-310 (2013). 

  16. S. H. Lee, J. W. Kook, J. G. Na, and Y. K. Oh, Net energy analysis of the microalgae biorefinery, Appl. Chem. Eng., 24(3), 285-290 (2013). 

  17. G. A. Thompson, Lipids and membrane function in green algae, Biochim. Biophys. Acta, 1302, 17-45 (1996). 

  18. I. A. Guschina and J. L. Harwood, Lipids and lipid metabolism in eukaryotic algae, Prog. Lipid Res., 45, 160-186 (2006). 

  19. Q. Hu, M. Sommerfeld, E. Jarvis, M. Ghirardi, M. Posewitz, M. Seibert, and A. Darzins, Microalgal triacylglycerols as feedstocks for biofuel production: Perspectives and advances. Plant J., 54, 621-639 (2008). 

  20. L. Rodolfi, G. C. Zittelli, N. Bassi, G. Padovani, N. Biondi, G. Bonini, and M. R. Tredici, Microalgae for oil: Strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor, Biotechnol. Bioeng., 102, 100-112 (2009). 

  21. A. M. Illman, A. H. Scragg, and S. E. Shales, Increase in Chlorella strains calorific values when grown in low nitrogen medium, Enzyme Microb. Technol., 27, 631-635 (2000). 

  22. J.-M. Lv, L.-H. Cheng, X.-H. Xu, L. Zhang, and H.-L. Chen, Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions, Bioresour. Technol., 101, 6797-6804 (2010). 

  23. A. Widjaja, C. C. Chien, and Y. H. Ju, Study of increasing lipid production from fresh water microalgae Chlorella vulgaris, J. Taiwan Inst. Chem. Eng., 40, 13-20 (2009). 

  24. I. Khozin-Goldberg and Z. Cohen, The effect of phosphate starva tion on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus, Phytochemistry, 67, 696-701 (2006). 

  25. K. I. Reitan, J. R. Rainuzzo, and Y. Olsen, Effect of nutrient limitation on fatty acid and lipid content of marine microalgae. J. Phycol., 30, 972-979 (1994). 

  26. T. Matthew, W. Zhou, J. Rupprecht, L. Lim, S.R. Thomas-Hall, A. Doebbe, O. Kruse, B. Hankamer, U. C. Marx, and S. M. Smith, The metabolome of Chlamydomonas reinhardtii following induction of anaerobic $H_2$ production by sulfur depletion, J. Biol. Chem., 284, 23415-23425 (2009). 

  27. H. F. Jin, B. R. Lim, and K. Lee, Influence of nitrate feeding on carbon dioxide fixation by microalgae, J. Environ. Sci. Health, A41, 2813-2824 (2006). 

  28. D. Feng, Z. Chen, S. Xue, and W. Zhang, Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresour. Technol., 102, 6710-6716 (2011). 

  29. S. H. Ho, W. M. Chen, and J. S. Chang, Scenedesmus obliquus CNW-N as a potential candidate for $CO_2$ mitigation and biodiesel production, Bioresour. Technol., 101, 8725-8730 (2010). 

  30. G. Mujtaba, W. Choi, C. G. Lee, and K. Lee, Lipid production by Chlorella vulgaris after a shift from nutrient-rich to nitrogen starvation conditions, Bioresour. Technol., 123, 279-283 (2012). 

  31. C. Wan, F. W. Bai, and X. Q. Zhao, Effects of nitrogen concentration and media replacement on cell growth and lipid production of oleaginous marine microalga Nannochloropsis ocenica DUT01, Biochem. Eng. J., 78, 32-38 (2013). 

  32. G. Kim and K. Lee, Simultaneous enhancement of biomass and lipid production in marine microalga Tetraselmis sp. through the supplementation of nitrate and glycerol, The 10th Korean Society of Marine Biotechnology. October 16, Incheon, Korea (2014). 

  33. M. Takagi and T. Yoshida, Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells, J. Biosci. Bioeng., 101, 223-226 (2006). 

  34. G.-Q. Chen, Y. Jiang, and F. Chen, Salt-induced alterations in lipid composition of diatom Nitzschia laevis (bacillariophyceae) under heterotrophic culture condition, J. Phycol., 44, 1309-1314 (2008). 

  35. L. Y. Zhu, X. C. Zhang, L. Ji, X. J. Song, and C. H. Kuang, Changes of lipid content and fatty acid composition of Schizochytrium limacinum in response to different temperatures and salinities, Process Biochem., 42, 210-214 (2007). 

  36. G. Kim and K. Lee, Lipid production in microalga Tetraselmis sp. through salinity variation, The 49th Korean Society of Industrial and Engineering Chemistry Meeting. May 1, Jeju, Korea (2014). 

  37. M. Einicker-Lamas, G. A. Mezian, T. B. Fernandes, F. L. S. Silva, F. Guerra, K. Miranda, M. Attias, and M. M. Oliveira, Euglena gracilis as a model for the study of $Cu^{2+}$ and $Zn^{2+}$ toxicity and accumulation in eukaryotic cells, Environ. Pollut., 120, 779-786 (2002). 

  38. Z.-Y. Liu, G.-C. Wang, and B.-C. Zhou, Effect of iron on growth and lipid accumulation in Chlorella vulgaris, Bioresour. Technol., 99, 4717-4722 (2008). 

  39. H. H. A. E. Baky, G. S. El-Baroty, A. Bouaid, M. Martinez, and J. Aracil, Enhancement of lipid accumulation in Scenedesmus obliquus by optimizing $CO_2$ and $Fe^{3+}$ levels for biodiesel production, Bioresour. Technol., 119, 429-432 (2012). 

  40. M. Rizwan, G. Mujtaba, and K. Lee, The effects of iron, $CO_2$ and light/dark in growth, lipid and carbohydrate accumulation in Dunaliella tertiolecta, The 50th Korean Society of Industrial and Engineering Chemistry Meeting. November 7, Daegu, Korea (2014). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로