$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Indole-3-acetic acid를 생성하는 Acinetobacter sp. SW5와 토마토 식물 간의 상호작용
Interactions between Indole-3-acetic Acid Producing Acinetobacter sp. SW5 and Growth of Tomato Plant 원문보기

Korean journal of microbiology = 미생물학회지, v.50 no.4, 2014년, pp.302 - 307  

권혁도 (강원대학교 생명과학과) ,  송홍규 (강원대학교 생명과학과)

초록
AI-Helper 아이콘AI-Helper

많은 근권세균들이 다양한 직간접적인 방법을 통해 식물생장을 촉진할 수 있으며 indole acetic acid (IAA) 같은 식물호르몬의 생산과 분비는 식물의 생장과 발달에 큰 영향을 미친다. 강아지풀의 근권에서 분리된 Acinetobacter sp. SW5는 BHB 배지에서 각각 2일과 1일 배양 시 118.1 mg/L의 IAA와 4.5 mg/L의 지베렐린을 생성하였다. 소규모 재배실험에서 토마토 유묘에 이 균주를 2주 간격으로 처리하면서 12주 재배 시 토마토 식물의 shoot와 뿌리 길이 및 습윤중량이 비접종 대조군과 비교할 때 통계적으로 유의하게 각각 26.3, 33.3과 105.3% 증가하였다. 토마토 유묘의 뿌리로부터 분비되는 삼출물을 HPLC로 분석한 결과 IAA의 전구물질인 아미노산 트립토판이 3.75 ng/mg tomato root 검출되었으며 Acinetobacter sp. SW5는 8개의 토마토 유묘뿌리 삼출물로부터 $4.06{\mu}M$의 IAA를 생성하였다. 토마토 뿌리 삼출물에서 Acinetobacter sp. SW5의 생장능과 더불어 이 세균에 의해 생성된 IAA가 토마토 식물의 생장을 촉진시키는데 관여했을 것으로 추정된다.

Abstract AI-Helper 아이콘AI-Helper

Many rhizobacteria can promote plant growth through various direct or indirect mechanisms, and their production of phytohormones such as indole-3-acetic acid (IAA) may have pronounced effects on growth and development of plants. Rhizobacterial strain isolated from rhizosphere of foxtail (Setaria vir...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

데이터처리

  • All experiments were performed at least in triplicate. Statistical analysis was performed on all experimental data by a simple t-test, and means were compared using the SYSTAT software (Ver. 10, SPSS Inc.). The significance level was P<0.
본문요약 정보가 도움이 되었나요?

참고문헌 (26)

  1. Ahemad, M. and Kilbret, M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. J. King Saud University - Science 26, 1-20. 

  2. Babalola, O.O. 2010. Beneficial bacteria of agricultural importance. Biotechnol. Lett. 32, 1559-1570. 

  3. Ball, D. 1964. Loss-on-ignition as an estimate of organic matter and organic carbon in non-calcareous soil. Soil Sci. 15, 84-92. 

  4. Baumann, P., Doudoroff, M., and Stanier, R. 1968. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J. Bacteriol. 96, 39-42. 

  5. Bhawsar, S., Path, S., and Chopade, B. 2012. Biosynthesis pathways of IAA production in Acinetobacter haemolyticus. Agric. Sci. Dig. 32, 214-218. 

  6. Bradford, M. 1976. Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. 

  7. Castro-Sowinski, S., Herschkovitz, Y., Okon, Y., and Jurkevitch, E. 2007. Effects of inoculation with plant growth-promoting rhizobacteria on resident rhizosphere microorganisms. FEMS Microbiol. Lett. 276, 1-11. 

  8. Chaiharn, M., Chunhaleuchanon, S., Kozo, A., and Lumyong, S. 2008. Screening of rhizobacteria for their plant growth promoting activities. KMITL Sci. Tech. J. 8, 18-23. 

  9. Gulati, A., Vyas, P., and Rahi, P. 2009. Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB723 from the cold deserts of the Himalayas. Curr. Microbiol. 58, 371-377. 

  10. Huddedar, S., Shete, A., Tilekar, J., Gore, S., Dhavale, D., and Chopade, B. 2002. Isolation, characterization, and plasmid pUPI126-mediated indole-3-acetic acid production in Acinetobacter strains from rhizosphere of wheat. Appl. Biochem. Biotechnol. 102-103, 21-39. 

  11. Indiragandhi, P., Anandham, R., and Madhaiyan, M. 2008. Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr. Microiol. 56, 327-333. 

  12. Kamilova, F., Kravchenko, L., Shapshnikov, A., Azarova, T., Makarova, N., and Lugtenberg, B. 2006. Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol. Plant Microbe Interact. 19, 250-256. 

  13. Kang, S.M., Joo, G.J., Hamayun, M., Na, C.I., Shin, D.H., Kim, H.Y., Hong, J.K., and Lee, I.J. 2009. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol. Lett. 31, 277-281. 

  14. Karadeniz, A., Topcuoglu, S., and Inan, S. 2006. Auxin, gibberellin, cytokinin and abscisic acid production in some bacteria. World J. Microbiol. Biotechnol. 22, 1061-1064. 

  15. Kim, W.J. and Song, H.G. 2012. Interactions between biosynthetic pathway and productivity of IAA in some rhizobacteria. Kor. J. Microbiol. 48, 1-7. 

  16. Kravchenko, L., Azarova, T., Makarova, N., and Tikhonovich, I. 2004. The effect of tryptophan present in plant root exudates on the phytostimulating activity of rhizobacteria. Microbiology 73, 156-158. 

  17. Kravchenko, L., Shapozhnikov, A., Makarova, N., Azarova, T., L'vova, K., Kostyuk, I., Lyapunova, O., Tikhonovich, I. 2011. Exometabolites of bread wheat and tomato affecting the plant-microbe interactions in the rhizosphere. Rus. J. Plant Physiol. 58, 936-940. 

  18. Lambrecht, M., Okon, Y., Broek, A., and Vanderleyden, J. 2000. Indole- 3-acetic acid: a reciprocal signalling molecule in bacteria-plant interactions. Trends Microbiol. 8, 298-300. 

  19. Leveau, J. and Lindow, S. 2005. Utilization of the plant hormone indole-3-acetic acid for growth by Pseudomonas putida strain 1290. Appl. Environ. Microbiol. 71, 2365-2371. 

  20. Nemec, A., Musilek, M., Sedo, O., De Baere, T., Maixnerova, M., van der Reijden, T., Zdrahal, Z., Vaneechoutte, M., and Dijkshoorn, L. 2010 Acinetobacter bereziniae sp. nov. and Acinetobacter guillouiae sp. nov., to accommodate Acinetobacter genomic species 10 and 11, respectively. J. Syst. Evol. Microbiol. 60, 896-903. 

  21. Patten, C. and Glick, B. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68, 3795-3801. 

  22. Rokhbakhsh-Zamin, F., Sachdev, D., Kazemi-Pour, N., Engineer, A., Pardesi, K., Zinjarde, S., Dhakephalkar, P., and Chopade, B. 2011. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. J. Microbiol. Biotechnol. 21, 556-566. 

  23. Shi, Y., Lou, K., and Li, C. 2011. Growth promotion effects of the endophyte Acinetobacter johnsonii strain 3-1 on sugar beet. Symbiosis 54, 159-166. 

  24. Spaepen, S., Vanderleyden, J., and Remans, R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 31, 425-448. 

  25. Spaepen, S. and Vanderleyden, J. 2011. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. doi: 10.1101/ cshperspect.a001438. 

  26. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255, 571-586. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로