$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

더미 미생물용출에 의한 폐-광석으로부터 유용금속 용해 특성과 Fe 제거와 전기분해를 이용한 금속구리분말 회수
The Characteristic Dissolution of Valuable Metals from Mine-Waste Rock by Heap Bioleaching, and the Recovery of Metallic Copper Powder with Fe Removal and Electrowinning 원문보기

韓國鑛物學會誌 = Journal of the Mineralogical Society of Korea, v.27 no.4, 2014년, pp.207 - 222  

김봉주 (조선대학교 에너지.자원공학과) ,  조강희 (조선대학교 에너지.자원공학과) ,  최낙철 (서울대학교 지역시스템공학과) ,  박천영 (조선대학교 에너지.자원공학과)

초록
AI-Helper 아이콘AI-Helper

폐-광석으로부터 금속구리분말을 회수하기 위하여 더미 미생물용출, Fe 제거와 전기분해실험을 수행하였다. Cu가 0.034% 함유된 폐-광석시료에 대하여 더미 용출실험을 수행한 결과, Cu 용출률은 박테리아 용출-용액에서 61%, 황산 용출-용액에서 62%로 나타났다. Fe를 효과적으로 제거하기 위하여 더미 용출-용액에 NaOH, $H_2O_2$$Ca(OH)_2$를 각각 적용한 결과 $H_2O_2$가 가장 효과적인 Fe 제거제로 선정되었다. 전해질 용액을 준비하기 위하여 $H_2O_2$를 더미 용출-용액에 처리한 결과 박테리아 용출-용액에서 Fe가 99%, 황산 용출-용액에서 60%로 제거된 반면에 Cu 제거율은 각각 5%와 7%로 나타났다. 이 용액에 대하여 전기분해 실험을 수행한 결과 Cu 회수율이 박테리아 용출-용액에서 98%, 황산 용출-용액에서 76%로 나타났다. 모수석 형태의 금속구리분말이 양쪽 용출-용액에서 회수되었다.

Abstract AI-Helper 아이콘AI-Helper

In order to recover the metallic copper powder from the mine-waste rock, heap bioleaching, Fe removal and electrowinning experiments were carried out. The results of heap leaching with the mine-waste rock sample containing 0.034% Cu showed that, the leaching rate of Cu were 61% and 62% in the bacter...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
폐-광석으로부터 금속구리분말을 회수하기 위해 무엇을 하였는가? 폐-광석으로부터 금속구리분말을 회수하기 위하여 더미 미생물용출, Fe 제거와 전기분해실험을 수행하였다. Cu가 0.
Cu 용출률은 어떻게 나타났는가? Cu가 0.034% 함유된 폐-광석시료에 대하여 더미 용출실험을 수행한 결과, Cu 용출률은 박테리아 용출-용액에서 61%, 황산 용출-용액에서 62%로 나타났다. Fe를 효과적으로 제거하기 위하여 더미 용출-용액에 NaOH, $H_2O_2$ 및 $Ca(OH)_2$를 각각 적용한 결과 $H_2O_2$가 가장 효과적인 Fe 제거제로 선정되었다.
채광활동을 수행하는 과정에서 무엇이 생성되는가? 지하의 유용금속을 회수하기 위하여 지하 및 지상에서 채광활동을 수행한다. 채광활동 과정에서 생성된 폐광석, 저품위광석, 광미(talling) 등이 광산주변에 대규모 더미(heap)로 방치되어 있다. 이렇게 대규모로 적치된 이들 더미로부터 소량의 황화광물이 남아있기 때문에 중금속이온이 방출되고 있어 광산주변 생태계가 오염되고 있다(Torma, 1984).
질의응답 정보가 도움이 되었나요?

참고문헌 (39)

  1. Aydogan, S. (2006) Dissolution kinetics of sphalerite with hydrogen peroxide in sulphuric acid medium. Chemical Engineering Journal, 23, 65-70. 

  2. Bhakta, P. and Arthur, B. (2002) Heap bio-oxidation and gold recovery at Newmont mining: first year results. Journal of The Minerals, Metals and Materials Society, 54, 31-34. 

  3. Brierley, C.L. (2008) How will biomining be applied future?. Transactions of Nonferrous metals Society of China, 18, 1302-1310. 

  4. Brierley, J.A. and Brierley, C.L. (2001) Present and future commercial applications of biohydrometallurgy. Hydrometallurgy, 59, 233-239. 

  5. Brombacher, C., Bachofen, R., and Brandl, H. (1997) Biohydrometallurgical processing of solids: a patent review. Applied Microbiology Biotechnology, 48, 577-587. 

  6. Carneiro, M.F.C. and Leao, V.A. (2007) The role of sodium chloride on surface properties of chalcopyrite leached with ferric sulphate. Hydrometallurgy, 87, 73-82. 

  7. Clark, M.E., Batty, J.D., van Buuren, C.B., Dew, D.W., and Eamon, M.A. (2006) Biotechnology in minerals processing: technological breakthroughs creating value. Hydrometallurgy, 83, 3-9. 

  8. Cooper, W.C. (1985) Advances and future prospects in copper electrowinning. Journal of Applied Electrochemistry, 15, 789-805. 

  9. Das, S.C. and Krishna, P.G. (1996) Effect of Fe(II) during copper electrowinning at higher current density. International Journal of Mineral Processing, 46, 91-105. 

  10. Deng, T.L., Liao, M.X., Wang, M.H., Chen, Y.W., and Belzile, N. (2000) Investigations of accelerating parameters for the biooxidation of low-grade refractory gold ores. Minerals Engineering, 13, 1543-1553. 

  11. Dhawan, N., Safarzadeh, M.S., Miller, J.D., Moats, M.S., and Rajamani, R.K., (2013) Crushed ore agglomeration and its control for heap leach operation. Minerals Engineering, 41, 53-70. 

  12. Dixon, D.G., (2000) Analysis of heat conservation during copper sulphide heap leaching. Hydrometallurgy, 58, 27-41. 

  13. Escobar, B. and Lazo, D. (2003) Activation of bacteria in agglomerated ores by changing the composition of the leaching solution. Hydrometallurgy, 71, 173-178. 

  14. Evangelou, V.P. and Zhang, Y.L. (1995) A review: pyrite oxidation mechanisms and acid mine drainage prevention. Critical Reviews in Environmental Science and Technology, 25, 141-199. 

  15. Ghorbani, Y., Becker, M., Mainza, A., Franzidis, J.P., and Petersen, J. (2011) Large particle effects in the chemical/biochemical heap leach processes-a review. Minerals Engineering, 24, 1172-1184. 

  16. Ismael, M.R.C. and Carvalho, J.M.R. (2003) Iron recovery from sulphate leach liquors in zinc hydrometallurgy. Minerals Engineering, 16, 31-39. 

  17. Logan, T.C., Seal, T., and Brierley, J.A. (2007) Biomining. Springer Berlin Heidelberg, 113-138p. 

  18. Lottermoser, B.G., (2007) Mine wastes. characterization, treatment, environmental impacts, Springer, New York, 304p. 

  19. Murr,L.E. and Berry, V.K. (1976) Direct observations of selective attachment of bacteria on low-grade sulfide ores and other mineral surfaces. Hydrometallurgy, 2, 11-24. 

  20. Olson, G.J., Brierley, J.A., and Brierley, C.L. (2003) Bioleaching review part B: progress in bioleaching: applications of microbial processes by the minerals industries. Applied Microbiology and Biotechnology, 63, 249-257. 

  21. Panda, B. and Das, S.C. (2001) Electrowinning of copper from sulfate electrolyte in presence of sulfurous acid. Hydrometallurgy, 59, 55-67. 

  22. Panda, S., Sanjay, K., Sukla, L.B., Pradhan, N., Subbaiah, T., Mishra, B.K., Prasad, M.S.R., and Ray, S.K. (2012) Insights into heap bioleaching of low grade chalcopyrite ores-a pilot scale study. Hydrometallurgy, 126, 157-165. 

  23. Petersen, J. and Dixon, D.G. (2002) Thermophilic heap leaching of a chalcopyrite concentrate. Minerals Engineering, 15, 777-785. 

  24. Popov, K.I., Dijukic, Lj.M., Pavlovic, M.G., and Maksimovic, M.D. (1979) The critical overpotential for copper dendrite formation. Journal of Applied Electrochemistry, 9, 527-531. 

  25. Pradhan, N., Nathsarma, K.C., Srinivasa, K., Sukla, L.B., and Mishra, B.K. (2008) Heap bioleaching of chalcopyrite: a review. Minerals Engineering, 21, 255-365. 

  26. Price, D.C. and Davenport, W.G. (1981) Physicochemical properties of copper electrorefining and electrowinning electrolytes. Metallurgical Transactions B, 12B, 639-643. 

  27. Qin, W.Q., Zhang, Y.Q., Li, W.Z., and Wang, J. (2008) Simulated small-scale piolt heap leaching of low-grade copper sulfide ore with selective extraction of copper. Transactions of Nonferrous Metals Society of China, 18, 1463-1467. 

  28. Qin, W., Zhen, S., Yan, Z., Campbell, M., Wang, Liu, K., and Zhang, Y. (2009) Heap bioleaching of a low-grade nickel-bearing sulfide ore containing high levels of magnesium as olivine, chlorite and antigorite. Hydrometallurgy, 98, 58-65. 

  29. Rawlings, D.E., Dew, D., and du Plessis, C. (2003) Biomineralization of metal-containing ores and concentrates. TRENDS in Biotechnology, 21, 38-44. 

  30. Shayestehfar, M.R., Nasab, S.K., and Mohammadalizadeh, H. (2008) Mineralogy, petrology, and chemistry studies to evaluated oxide copper ores for heap leaching in Sarcheshmeh copper mine, kerman, Iran. Journal of Hazardous Materials, 154, 602-612. 

  31. Silverman, M.P. (1967) Mechanism of bacteria pyrite oxidation. Journal of Bacteriology, 94, 1046-1051. 

  32. Torma, A.E. (1984) Current standing of bacterial heap, dump and in-situ leaching technology of copper. Metallurgy, 38, 1044-1047. 

  33. Van Hille, R.P., van Zyl, A.W., Spurr, N.R.L., and Harrison, S.T.L. (2010) Investigating heap bioleaching: effect of feed iron concentration on bioleaching performance. Minerals Engineering, 23, 518-525. 

  34. Veglio, F., Trifoni, M., Pagnanelli, F., and Toro, L. (2001) Shrinking core model with variable activation energy: a kinetic model of manganiferous ore leaching with sulphuric acid and lactose. Hydrometallurgy, 60, 167-179. 

  35. Watling, H.R. (2006) The bioleaching of sulfide minerals with emphasis on copper sulfide-a review. Hydrometallurgy, 84, 81-108. 

  36. Watling, H.R. (2008) The bioleaching of nickel-copper sulfides. Hydrometallurgy, 91, 70-88. 

  37. Wei, X., Viadero, Jr, R.C., and Buzby, K.M. (2005) Recovery of iron and aluminum from acid mine drainage by selective precipitation. Environmental Engineering Science, 22, 745-755. 

  38. Wu, A., Yin, S., Qin, W., Liu, J., and Qiu, G. (2009) The effect of preferential flow on extraction and surface morphology of copper sulphide during heap leaching. Hydrometallurgy, 95, 76-81. 

  39. Yang, Z., Rui-lin, M., Wang-don, N., and Hui, W. (2010) Selective leaching of base metals from copper smelter slag. Hydrometallurgy, 103, 25-29. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로