$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

구리에 노출된 돌돔(Oplegnathus fasciatus)의 항산화 효소 및 acetylcholinesterase 활성의 변화
Chronic Effects of Copper on Antioxidant Enzymes and Acetylcholinesterase Activities in Rock bream Oplegnathus fasciatus 원문보기

한국수산과학회지 = Korean journal of fisheries and aquatic sciences, v.47 no.6, 2014년, pp.874 - 881  

민은영 (부경대학교 수산과학연구소) ,  강주찬 (부경대학교 수산생명의학과)

Abstract AI-Helper 아이콘AI-Helper

A laboratory experiment was conducted to determine chronic effects of waterborne copper exposure on rock bream Oplegnathus fasciatus using a panel of enzymes. The activities of the following biochemical biomarkers were determined at different concentrations of $CuSO_4$ for 10 and 20 days:...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 간과 아가미에서는 항산화 효소(GSH, GPx, SOD)를, 뇌와 근육에서 AChE의 활성을 검토하기 위하여 다음과 같이 진행하였다. 적출한 각 기관은 washing buffer (0.
  • 따라서 본 연구는 국내 주요 양식종인 돌돔(Oplegnathus fasciatus)에 대한 구리의 만성적 영향을 알아보기 위해서 혈액, 간, 아가미, 뇌 및 근육에서 구리 독성과 관련 있는 일련의 효소들의 활성을 조사하였다.
  • 본 연구에서는 돌돔(O. fasciatus)에서 구리의 만성적 노출에 따른 어류의 생리 활성 변화를 파악할 수 있는 biomarker 조사를 위해 혈청 효소 및 간과 아가미에서의 항산화 효소와 뇌와 근육에서의 AChE의 활성을 측정하였다. 이전 연구에 따르면 구리에 대한 돌돔의 24시간 반수치사농도(LC50)는 1.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
GSH란? GSH는 세포에서 ROS와 직접적으로 반응하여 독성물질의 대사 및 수송 과정에 관여하는 물질로, ROS뿐만 아니라 이들의 대사 산물과도 반응하여 세포의 방어 기작에 다방면으로 작용한다(Dringen et al., 2000).
과도한 구리 노출에 의한 생물독성 기전 모델의 예는? 과도한 구리 노출에 의한 생물독성 기전에는 여러 가지 모델이 제시되는데, 그 중 하나는 superoxide (O2·−), hydroxyl (OH·) 및 peryoxyl (ROO·)과 같은 활성산소류(ROS, reactive oxygen species)를 과도하게 발생시켜 세포 독성을 유발한다는 것이다(Linde et al., 2005).
바다에서 과도한 구리 노출이 발생하면 어떤 결과를 초래하는가? , 2005). 하지만, 구리는 적정 농도를 넘어서면 어류를 포함한 해양생물에 상당한 독성을 발휘하는 것으로 알려져 있으며, 필요 이상의 농도에 노출될 경우 시간과 농도에 비례하여 어류 및 갑각류의 폐사를 일으키고, 성장, 항상성 유지 및 생리활동에 부정적인 영향을 미친다(Carvalho and Fernandes, 2005; Park et al., 2009; Shin et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (60)

  1. Ahmad IMP and Santos MA. 2004. Enzymatic and nonenzymatic antioxidants as an adaption to phagocytic-induced damage in Anguilla anguilla L. following in situ harbor water exposure. Ecotoxicol Environ Safe 2, 290-302. 

  2. Antognelli C, Romani R, Baldracchini F, De Santis A, Andreani G and Talesa A. 2003. Different activity of glyozalase enzymes in specimens of Sparus auratus exposed to sublethal copper concentrations. Chem Biol Interact 142, 297-305. 

  3. Atli G and Canli M. 2010. Response of antioxidant system of freshwater fish Oreochromis niolticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposure. Ecotoxicol Environ Safe 73, 1884-1889. 

  4. Baeck SK. 2012. Combined effect of Cu and temperature on physiological and biochemical change of rock fish, Sebastes schlegeli. Master, Thesis, Pukyong National University, Pusan, Korea. 

  5. Bell JG, Cowey CB, Adron JW and Shanks AM. 1985. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri). Br J Natr 53, 149-157. 

  6. Blasco J and Puppo J. 1999. Effect of heavy metals (Cu, Cd and Pu) on aspartate and alanine aminotransferase in Ruditapes philippinarum (Mollusca: Bivalvia). Comp Biochem Physiol Part C: Parmacol Toxicol Endocrinol, 253-263. 

  7. Bopp SK, Abicht HK and Knauer K. 2008. Copper-induced oxidative stress in rainbow trout gill cells. Aquat Toxicol 86, 197-204. 

  8. Bradford MM. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248-254. 

  9. Bretaud S, Toutant JP and Saglio P. 2000. Effects of carbofuran, diuron and nicosulfuron on acetylcholinesterase activity in goldfish (Carassius auratus). Ecotoxicol. Environ Safe 47, 117-124. 

  10. Campbell HA, Handy RD and Nimmo M. 1999. Copper uptake kinetics across the gills of rainbow trout (Oncorhynchus mykiss) measured using an improved isolated perfused head technique. Aquat Toxicol 46, 177-190. 

  11. Canesi L, Viarengo A, Leonzio C, Filippelli M and Gallo G. 1999. Heavy metals and glutathione metabolism in mussel tissues. Aquat Toxicol 46, 67-76. 

  12. Carvalho CS and Fernandes MN. 2005. Effect of temperature on copper toxicity and hematological responses in the neotropical fish Prochilodus scrofa at low and high pH. Aquaculture 251, 109-117. 

  13. Clark RB. 1996. Metals. In: Marine pollution. Oxford University Press, Oxford, New York, USA, 74-77. 

  14. Conners DE and Ringwood AH. 2000. Effects of glutathione depletion on copper cytotoxicity in oysters (Crassostrea virginica). Aquat Toxicol 50, 341-349. 

  15. Dautrmepuits C, Betoulle S, Vernet G. 2002. Antioxidant response modulated by copper in healthy or parasitized carp (Cyprinus carpio L.) by Ptychobothrium sp. (Cestoda). Biochim Biophy Act 4-8. 

  16. Devi M and Fingerman M. 1995. Inhibition of acethylcholinesterase activity in the central nervous system of the Red swamp crayfish, Procambarus clarkia by mercury, cadmium and lead. Bull Environ Contam Toxicol 55, 746-750. 

  17. Diamantino L, Almeida E, Soares AMVM and Guilhermino L. 2003. Characterization of cholinesterase from Daphina magna status and their inhibition by zinc. Bull Environ Contam Toxicol 71, 219-225. 

  18. Dringen R, Gutterer JM, Hirrlinger J. 2000. Glutathione metabolism in brain metabolic interaction between astrocytes and neurons in the defense against reactive oxygen species. Eur J Biochem 267, 4912-4916. 

  19. Ellman GL, Courtney KD, Andres V and RM Featherstone. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Parmacol 7, 88-95. 

  20. Freedman JH, Ciriolo MR and Peisach J. 1989. The role of glutathione in copper metabolism and toxicity. J Biol Chem 264, 5598-5605. 

  21. Gaetke LM and Chow CK. 2003. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189, 147-163. 

  22. Galgani F, Bocquene G and Cadiou Y. 1992. Evidence of variation in cholinesterase activity in fish along a pollution gradient in the North Sea. Mar Ecol Prog Ser 91, 77-82. 

  23. Gallagher EP, Canada AT and Di Giulio RT. 1992. The protective role of glutathione in chlorothalonil-induced toxicity to channel catfish. Aquat Toxicol 23, 155-168. 

  24. Gert F, Stouthart XJHX, Spanings FAT, Lock RAC, Fenwick JC and Bonga SEW. 2002. Stress response to waterborne Cu during early life stages of carp, Cyprinus carpio. Aquat Toxicol 56, 167-176. 

  25. Gioda CR, Loro VL, Pretto A, Salbeg J, Dressler V and Flores EMM. 2013. Sublethal Zinc and Copper exposure affect acethylcholinesterase activity and accumulation in different tissues of Leporinus obtusidens. Bull Environ Contam Toxicol 90, 12-16. 

  26. Guilhermino L, Barros P, Silva MC and Soares AMVM. 1998. Should the use of cholinesterase as a specific biomarker for organophosphate and carbamate pesticides be questioned? Biomarker 3, 157-163. 

  27. Handy RD. 2003. Chronic effects of copper exposure versus endocrine toxicity: two sides of the same toxicological process?. Comp Biochem Physiol 135A, 25-38. 

  28. Hansen BH, Romma S, Garmo OA, Olsvik PA and Andersen RA. 2006. Antioxidative stress proteins and their gene expression in brown trout (Salmo trutta) from three rivers with different heavy metals levels. Comp Biochem Physiol C 143, 263-274. 

  29. Hayes JD and McLellan LI. 1999. Glutathione and Glutathionedependent enzymes represent a coordinately regulated defense against oxidative stress. Free Rad Res 31, 273-300. 

  30. Jebali J, Banni M, Guerbei H, Almeida EA, Bannaoui A and Boussetta H. 2006. Effects of malathion and cadmium on acethylcholinesterase activity and metallothionein levels in the fish Seriola dumerilli. Fish Physiol Biochme 32, 93-98. 

  31. Kim JH. 2013. Effects of selenium on the responses of antioxidant enzymes, acetylcholinesterase activity, non-specific immune, and bioaccumulation in red seabream, Pagrus major. Master, Thesis, Pukyong National University, Pusan, Korea. 

  32. Kramer KJM. 1994. Bio-monitoring of coastal waters and estuaries. CRC press, London. 325-329. 

  33. Lee IS and Kim EJ. 2000. Distribution of Heavy Metals in Sediments, Seawater and Oysters (Crassostrea giga) in the Jinhae Bay. J Ecol Environ 23, 59-64. 

  34. Linde AR, Klein D and Summer H. 2005. Phenomenon of hepatic overload of copper in Mugil cephalus: Role of metallothionein and patterns of copper cellular distribution. Bas Clin Pharm Toxicol 97, 230-235. 

  35. Liu H, Zhang JF, Shen H, Wang XR and Wang WM. 2005. Impact of Copper and Its EDTA Complex on the Glutathione-Dependent Antioxidant System in Freshwater Fish (Carassius auratus). Bull Environ Contam Toxicol 74, 1111-1117. 

  36. Lushchak VI. 2011. Environmentally induced oxidative stress in aquatic animals (Review). Aquat Toxicol 101, 13-30. 

  37. Maracine M and Segner H. 1998. Cytotoxicity on metals in isolated fish cells: Importance of the cellular glutathione status. Comp Biochem Physiol 120, 83-88. 

  38. Miron dos SD, Crestani M, Shettinger RM, Morsch MV, Baldisserotto B, Tierno AM, Moraes G and Vieira VL. 2005. Effects of the herbicides clomazone, quinclorac, and metsulfuron methyl on acetylcholinesterase activity in the silver catfish (Rhamdia quelen) (Heptapteridae). Ecotoxicol. Environ Saf 61, 398-403. 

  39. Modesto KA and Martinez CBR. 2010. Roundup causes oxidative stress in liver and inhibits acethylcholinesterase in muscle and brain of the fish Prochilodus lineatus. Chemosphere 78, 294-299. 

  40. Niyogi S, Kamunde CN and Wood CM. 2006. Food selection, growth and physiology in relation to dietary sodium chloride content in rainbow trout (Oncorhynchus mykiss) under chronic waterborne Cu exposure. Aquat Toxicol 77, 210-221. 

  41. Ossola JO, Groppa MD and Tomaro ML. 1997. Relationship between oxidative stress and heme oxygenase induction by copper sulfate. Arch Biochem Biophys 33, 332-337. 

  42. Park KY, Lee DJ, Won DH, Lee WH and Kwak IS. 2009. Studies on endpoints of toxiclogical evaluation of heavy metals in Brachinella kugenumaensis. J Environ Toxicol 24, 241-249. 

  43. Park JS and Kim HG. 1979. Bioassays on marine organisms III. Acute toxicity test of mercury, copper and cadmium to yellowtail, Seriola quinqueradiata and rock bream, Oplegnathus fasciatus. Bull Korean Fish Soc 12, 119-123, 1979. 

  44. Richardson RJ and Murphy SD. 1975. Effect of glutathione depletion on tissue deposition of methylmercury in rats. Toxicol Appl Pharmacol 31, 505-519. 

  45. Romani R, Antognelli C, Baldracchini F, De Santis A, Isani G, Giovannini E and Rosi G. 2003. Increased acetylcholinesterase activities in specimens of Sparus auratus exposed to sublthal copper concentrations. Chem Biol Inter 145, 321-329. 

  46. Sanchez W, Palluel O, Meunier L, Coquery M, Procher JM and Aissa SA. 2005. Copper-induced oxidative stress in threespined stickleback: relationship with hepatic metal levels. Environ Toxicol Pharmacol 19, 177-183. 

  47. Shin SW, Cho HD, Chon TS, Kim JS, Lee SK and Koh SC. 2003. Neurobiochemical analysis of abnormal fish behavior caused by copper toxicity. J Environ Toxicol 18, 145-153. 

  48. Shin YK, Park JJ, Lim HS and Lee JS. 2013. Copper toxicity of survival, respiration and organ structure of Mactra veneriformis (Bivalvia: Mactridae). K J Malacol 29, 129-237. 

  49. Svecevicius G and Vosyliene MZ. 1996. Acute toxicity of copper to common freshwater fishes of Lithuania. Ekologija 2, 17-21. 

  50. Tao S, Long A, Liu C and Dawson R. 2000. The influence of mucus of copper speciation in the gill microenvironment of carp (Cyprinus carpio). Ecotoxicol Environ Saf 47, 59-64. 

  51. Tucker CS. 1985. Water quality. In: Channel catfish culture. Ed, Tucker CS. Elsevier, Amsterdam, 135-227. 

  52. Valavanidis AT, Dassenakis M and Scuollos N. 2006. Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environment pollutants. Ecotoxicol. Environ Saf 64, 178-189. 

  53. Vieira LR, Gravato C, Soares AMVM, Morgado F and Guilhermino L. 2009. Acute effects of copper and mercury on the estuarine fish Pomatoschistus microps: linking biomarkers to behavior. Chemosphere 76, 1416-1427. 

  54. White CC, Viernes H, Krejsa CM, Botta D and Kavanagh TJ. 2003. Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity. Anal Biochem 318, 175-180. 

  55. Winston GW and Giulio RT. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19, 137-161. 

  56. Witters HE, Van Puymbroeck S, Van Den Sande I and Vanderborght OLJ. 1990. Hematological disturvances and osmotic shifts in rainbow trout, Oncorhynchus miykiss (walbaum) inder acid and aluminum exposure. J Comp Physiol 160B, 563-571. 

  57. Winston GW and Giulio RT. 1991. Prooxidant and antioxidant mechanisms in aquatic organisms. Aquat Toxicol 19, 137-161. 

  58. Zhang SSZ, Noordin MM, Rahman SOA and Haron MJ. 2000. Effects of copper overload on hepatic lipid peroxidation and antioxidant defense in rats. Vet Hum Toxicol 42, 261-264. 

  59. Zhang FS, Nriagu JO and Itoh H. 2005. Mercury removal form water using activated carbons derived from organic sewage sludge. Water Res 39, 389-395. 

  60. Xiuling JI, Qunhui S, Fang L, Jing M, Gang X, Yuanlong W and Minghongm W. 2012. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China. J Hazard Mat 235-236, 178-185. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로