$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

잡곡 유래 에탄올 추출물 및 이의 유기용매 분획들의 항산화 활성 비교평가
Comparative Evaluation of Antioxidant Activities of Ethanol Extracts and Their Solvent Fractions Obtained from Selected Miscellaneous Cereal Grains 원문보기

생명과학회지 = Journal of life science, v.24 no.1 = no.165, 2014년, pp.26 - 38  

박동화 (경북대학교 자연과학대학 생명과학부) ,  이승태 (경북대학교 자연과학대학 생명과학부) ,  전도연 (경북대학교 자연과학대학 생명과학부) ,  이지영 (경북대학교 자연과학대학 생명과학부) ,  우미희 (대구가톨릭대학교 약학대학 약학과) ,  김기영 (농촌진흥청 식량과학원 기능성작물부) ,  서명철 (농촌진흥청 식량과학원 작물환경과) ,  고지연 (농촌진흥청 식량과학원 기능성작물부) ,  우관식 (농촌진흥청 식량과학원 기능성작물부) ,  정태욱 (농촌진흥청 식량과학원 기능성작물부) ,  곽도연 (농촌진흥청 식량과학원 기능성작물부) ,  남민희 (농촌진흥청 식량과학원 기능성작물부) ,  김영호 (경북대학교 자연과학대학 생명과학부)

초록
AI-Helper 아이콘AI-Helper

잡곡류의 항산화활성을 조사하기 위해 국내산 11종의 잡곡으로부터 80% 에탄올 추출물을 얻어 DPPH- 및 ABTS-라디칼 소거활성을 측정한 결과, 황금찰수수(Sorghum bicolor L. Moench cv. Hwanggeumchalsusu), 찰수수(Sorghum bicolor L. Moench cv. Chalsusu) 및 식용피(Echinochloa esculenta)의 에탄올 추출물이 다른 잡곡류의 에탄올 추출물에 비해 높은 라디칼 소거활성을 나타내었다. 이들 황금찰수수, 찰수수 및 식용피의 에탄올 추출물을 n-hexane, methylene chloride, ethyl acetate 및 n-butanol로 분획하였을 때, 대부분의 라디칼 소거활성은 페놀성 화합물이 주로 함유되어 있는 것으로 나타난 ethyl acetate 분획과 butanol 분획에서 집중적으로 확인되었다. 특히, 황금찰수수의 ethyl acetate 분획과 butanol 분획의 라디칼 소거활성은 천연 항산화제인 ${\alpha}$-tocopherol에 비해 더 높게 나타났다. 황금찰수수, 찰수수 및 식용피 유래의 ethyl acetate 분획과 butanol 분획은 지질 과산화를 저해하는 것으로 ferric thiocyanate (FTC)와 thiobarbituric acid (TBA) 방법에 의해 확인되었다. 황금찰수수, 찰수수 및 식용피 유래의 ethyl acetate 분획의 경우, tertiary-butyl hydroperoxide (TBHP) 처리에 의해 HL-60 세포에서 유도되는 에폽토시스 현상들 즉, sub-G1 세포 등장, ${\Delta}{\Psi}m$ 소실, caspase-9과 caspase-3의 활성화, 그리고 PARP와 lamin B의 분해 등을 저해하는 것으로 나타났다. 이러한 결과들은 황금찰수수, 찰수수 및 식용피가 효율적인 항산화 활성을 지니고 있으며 산화적 손상에 의해 매개되는 에폽토시스를 억제할 수 있음을 보여준다. 아울러 이러한 연구결과들은, 황금찰수수, 찰수수 및 식용피가 산화적 스트레스로부터 세포를 보호하는 항산화 식이소재가 될 수 있음을 시사한다.

Abstract AI-Helper 아이콘AI-Helper

To examine the antioxidant activities of 11n selected miscellaneous cereal grains (proso millet, yellow glutinous proso millet, hwanggeumchal sorghum, glutinous sorghum, white glutinous sorghum, yellow glutinous foxtail millet, nonglutinous foxtail millet, green glutinous foxtail millet, golden foxt...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In order to examine further the antioxidant properties of hwanggeumchal sorghum, glutinous sorghum, and barnyard millet grains, the 80% ethanol extracts of the three miscellaneous cereal grains were sequentially fractionated with n-hexane, methylene chloride, ethyl acetate and n-butanol, and then individual organic solvent fractions were tested for the DPPH and ABTS radical scavenging activities. As shown in Table 2, the ethyl acetate and butanol fractions exhibited more potent DPPH radical- and ABTS radical-scavenging activities as compared to other organic solvent fractions of hwanggeumchal sorghum, glutinous sorghum, and barnyard millet.
  • Ferric thiocyanate (FTC) assay and thiobarbituric acid (TBA) assay, which are frequently used as antioxidant tests for plant and food components, are known to specifically monitor hydroperoxide and malonaldehyde (MA) as the products of lipid peroxidation, respectively. In order to examine whether the antioxidant properties of glutinous sorghum, hwanggeumchal sorghum and barnyard millet grains, which were detectable by DPPH radical- and ABTS radical-scavenging activities, could also prevent lipid peroxidation, we decided to investigate the effects of the 80% ethanol extracts, ethyl acetate fractions, and butanol fractions from hwanggeumchal sorghum, glutinous sorghum and barnyard millet grains on linoleic acid peroxidation by employing both FTC and TBA methods.
  • The 80% ethanol extracts of hwanggeumchal sorghum, glutinous sorghum and barnyard millet grains, which appeared to possess more potent free radical-scavenging activities compared with those of other grains, were sequentially fractionated by n-hexane, methylene chloride, ethyl acetate and n-butanol. Since the DPPH radical- and ABTS radical-scavenging activities were mainly detected in the ethyl acetate fraction followed by the butanol fraction, the antioxidant activity of the ethyl acetate fractions have been examined further by investigating not only their inhibitory effect on lipid peroxidation using ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods, but also their cytoprotective effect on tertiary-butyl hydroperoxide (TBHP)-induced apoptotic cell death in human HL-60 cells.
  • To evaluate antioxidant properties of miscellaneous cereal grains, which were harvested in Korea, including proso millet, yellow glutinous proso millet, hwanggeumchal sorghum, glutinous sorghum, white glutinous sorghum, yellow glutinous foxtail millet, non-glutinous foxtail millet, green glutinous foxtail millet, golden foxtail millet, barnyard millet and adlay, the free radical-scavenging activities of 80% ethanol extracts prepared from the individual grains were measured using DPPH and ABTS methods, both of which have widely been employed to evaluate free radical-scavenging activities of natural compounds in foods and biological systems [34, 43]. As shown in Table 1, the 80% ethanol extract of hwanggeumchal sorghum grains exhibited the highest DPPH radical-scavenging activity followed by those of glutinous sorghum and barnyard millet grains.

대상 데이터

  • Dimethyl sulfoxide (DMSO), Folin-ciocaleau reagent, 1,1-diphenyl-2-picryl-hydrazl (DPPH), 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), tertiary-butyl hydroperoxide (TBHP), ferric thiocyanate (FTC), thiobarbituric acid (TBA), α-tocopherol, linoleic acid, ammonium thiocynate, thiobarbituric acid, and tannic acid were purchased from Sigma (St, Louis, MO, USA).
  • Eleven miscellaneous cereal grains, including proso millet (polished grains), yellow glutinous proso millet (unpolished grains), hwanggeumchal sorghum (unpolished grains), glutinous sorghum (polished grains), white glutinous sorghum (unpolished grains), yellow glutinous foxtail millet (polished grains), non-glutinous foxtail millet (polished grains), green glutinous foxtail millet (polished grains), golden foxtail millet (unpolished grains), barnyard millet (unpolished grains), and adlay (polished grains), harvested in Korea were provided by National Institute of Crop Science, Rural Development Administration, Miryang, Gyeongnam 627-803, Korea. Individual dried grains were milled on a Blender 7012 (Dynamics Corporation, USA), and then extracted with 80% ethanol for 3 h at 80°C.
  • The percent of inhibition of lipid peroxidation = 100–(A1–A0)×10, where A0 is the absorbance of the negative control and A1 is the absorbance of the extract samples [8]. The experiment was performed in triplicates.

데이터처리

  • The statistical significance was calculated with Student’s t-test.

이론/모형

  • Previously many studies have demonstrated a high correlation between the contents of total phenolic compounds in plants and their antioxidant capacity [7, 18, 33, 35, 47]. To investigate the correlation between antioxidant activities and total phenolic contents, the ethanol extracts and their organic solvent fractions were analyzed for total phenolic contents using Folin-Ciocalteau method.
본문요약 정보가 도움이 되었나요?

참고문헌 (47)

  1. Adams, J. D., Wang, B., Klaidman, L. K., LeBel, C. P., Odunze, I. N. and Shah, D. 1993. New aspects of brain oxidative stress induced by tert-butylhydroperoxide. Free Radic Biol Med 15, 195-202. 

  2. Ames, B. N., Shigenaga, M. K. and Hagen, T. M. 1993. Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90, 7915-7922. 

  3. Blois, M. S. 2000. Antioxidant determination by the use of a stable radical. Nature 26, 1199-1200. 

  4. Bodamyali, T., Stevens, C. R., Blake, D. R. and Winyard, P. G. 2000. Reactive oxygen/nitrogen species and acute inflammation: a physiological process, pp11-16. In: Winyard, P. G., Blake, D. R. and Evans, C. H. (eds.), Free radicals and inflammation. Birkhauser Verlag Basel: Switzerland. 

  5. Chance, B., Sies, H. and Boveris, A. 1979. Hydroperoxide metabolism in mammalian organs. Physiol Rev 59, 527-605. 

  6. Cotelle, N., Bernier, J. L., Catteau, J. P., Pommery, J., Wallet, J. C., Gaydou, E. M. 1996. Antioxidant properties of hydroxyflavones. Free Radic Biol Med 20, 35-43. 

  7. De Beer, D., Joubert, E., Gelderblom, W. C. and Manley, M. 2003. Antioxidant activity of South African red and white cultivar wines: free radical scavenging. J Agric Food Chem 51, 902-909. 

  8. Elmastas, M., Isildak, O., Turkekul, I. and Temur, N. 2007. Determination of antioxidant activity and antioxidant compounds in wild edible mushrooms. J Food Compos Anal 20, 337-345. 

  9. Ferreira, I. L., Resende, R., Ferreiro, E., Rego, A. C. and Pereira, C. F. 2010. Multiple defects in energy metabolism in Alzheimer's disease. Curr Drug Targets 11, 1193-1206. 

  10. Fletcher, A. E. 2010. Free radicals, antioxidants and eye diseases: evidence from epidemiological studies on cataract and age-related macular degeneration. Ophthalmic Res 44, 191-198. 

  11. Gibson, S. B. 2010. A matter of balance between life and death: Targeting reactive oxygen species (ROS)-induced autophagy for cancer therapy. Autophagy 6, 835-837. 

  12. Gutteridge, J. M. C. and Halliwell, B. 1994. Antioxidants in nutrition, health, and disease. Oxford University Press: Oxford, New York, Tokyo. 

  13. Ha, Y. D. and Lee, S. P. 2001. Characteristics of proteins in Italian millet, sorghum and common millet. Korean J Postharvest Sci Technol 8, 187-192. 

  14. Haidara, K., Morel, I., Abalea, V., Gascon Barre, M., Denizeau, F. 2002. Mechanism of tert-butylhydroperoxide induced apoptosis in rat hepatocytes: involvement of mitochondria and endoplasmic reticulum. Biochim Biophys Acta 1542, 173-185. 

  15. Hatano, T., Edamatsu, R., Hiramatsu, M., Mori, A., Fujita, Y. and Yasuhara, E. 1989. Effects of the interaction of tannins with co-existing substances. VI: Effects of tannins and related polyphenols on superoxide anion radical and on 1,1-diphenyl-2-picrylhydrazyl radical. Chem Pharma Bull 37, 2016-2021. 

  16. Ingold, K. U., Webb, A. C., Witter, D., Burton, G. W., Metcalfe, T. A. and Muller, D. P. 1987. Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch Biochem Biophys 259, 224-225. 

  17. Jain, A., Soni, M., Deb, L., Jain, A., Rout, S., Gupta, V. and Krishna, K. 2008. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. leaves. J Ethnopharmacol 115, 61-66. 

  18. Javanraedi, J., Stushnoff, C., Locke, E. and Vivanco, J. M. 2003. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem 83, 547-550. 

  19. Jun, D. Y., Kim, J. S., Park, H. S., Han, C. R., Fang, Z., Woo, M. H., Rhee, I. K. and Kim, Y. H. 2007. Apoptogenic activity of auraptene of Zanthoxylum schinifolium toward human acute leukemia Jurkat T cells is associated with ER stressmediated caspase-8 activation that stimulates mitochondria- dependent or -independent caspase cascade. Carcinogenesis 28, 1303-1313. 

  20. Kasai, H., Okada, Y., Nishimura, S., Rao, M. S. and Reddy, J. K. 1989. Formation of hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res 49, 2603-2605. 

  21. Kawanishi, S., Hiraku, Y., Murata, M. and Oikawa, S. 2002. The role of metals in site-specific DNA damage with reference to carcinogenesis. Free Radic Biol Med 32, 822-832. 

  22. Kil, H. Y., Seong, E. S., Ghimire, B. K., Chung, I. M., Kwon, S. S., Goh, E. J., Heo, K., Kim, M. J., Lim, J. D., Lee, D. and Yu, C. Y. 2009. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem 115, 1234-1239. 

  23. Kim, M. S., Oh, I. T., Jun D. Y., Lee, J. Y., Sohn, H. Y., Kwak, D. Y., Seo, M. C., Woo, K. S., Ko, J. Y., Jung, T. W., Nam, M. H., Woo, M. H. and Kim, Y. H. 2013. Anticoagulant and fibrinolytic activities of hwanggeumchal sorghum grains in vitro. J Life Sci 23, 1460-1470. 

  24. Kroemer, G. and Reed, J. C. 2000. Mitochondrial control of cell death. Nat Med 6, 513-519. 

  25. Kwak, C. S., Lim, S. J., Kim, S. A., Park, S. C. and Lee, M. S. 2004. Antioxidative and antimutagenicity effects of Korean buckwheat, sorghum, millet, and Job's tears. J Korean Soc Food Sci Nutr 33, 921-929. 

  26. Kweon, Y. M. and Park, K. Y. 1998. Antimutagenic and anticarcinogenic effect of sorghum. Korean Association Cancer Prev 3, 128-135. 

  27. Larson, R. A. 1998. The antioxidants of higher plants. Phytochemistry 27, 969-978. 

  28. Marquart, L., Jacobs, D. R. Jr. and Slavin, J. L. 2000. Whole grains and health. J Am Coll Nutr 19, 289S-290S. 

  29. Michalak, A. 2006. Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish J Environ Stud 15, 523-530. 

  30. Moon, J. K. and Shibamoto, T. 2009. Antioxidant assays for plant and food components. J Agric Food Chem 57, 1655-1666. 

  31. Osawa, T. A. 1981. Novel type of antioxidant isolated from leaf wax of Eucalytus leaves. Agric Biol Chem 45, 735-739. 

  32. Park, M. Y., Kim, J. H. and Park, D. S. 2011. Anti-inflammatory activities of hog millet (Panicum miliaceum L.) in murine macrophages through IRAK-4 signaling. Korean J Food Nutr 24, 268-272. 

  33. Pellegrini, N., Simonetti, P., Gardana, C., Brenna, O., Brighenti, F. and Pietta, P. 2000. Polyphenol content and total antioxidant activity of vini novelli (young red wines): J Agric Food Chem 48, 732-735. 

  34. Pino, J. A., Regalado, E. L., Rodriguez, J. L, Fernandez, M. D. 2010. Phytochemical analysis and in vitro free-radical-scavenging activities of the essential oils from leaf and fruit of Melaleuca leucadendra L. Chem Biodivers 7, 2281-2288. 

  35. Proteggente, A. R., Pannala, A. S., Paganga, G., Van Buren, L., Wagner, E., Wiseman, S., Van De Put, F., Dacombe, C. and Rice-Evans, C. A. 2002. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radic Res 36, 217-233. 

  36. Sachidanandame, K., Fagan, S. C. and Ergul, A. 2005. Oxidative stress and cardiovascular disease: antioxidants and unresolved issues. Cardiovasc Drug Rev 23, 115-132. 

  37. Saha, K., Lajis, N. H., Israf, D. A., Hamzah, A. S., Khozirah, S., Khamis, S. and Syahida, A. 2004. Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J Ethnopharmacol 92, 263-267. 

  38. Sahyoun, N. R., Jacques, P. F., Zhang, X. L., Juan, W. and McKeown, N. M. 2006. Whole-grain intake is inversely associated with the metabolic syndrome and mortality in older adults. Am J Clin Nutr 83, 124-131. 

  39. Singleton, V. L. and Rossi, J. A. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16, 144-158. 

  40. Slavin, J. L., Martini, M. C., Jacobs, D. R. Jr. and Marquart, L. 1999. Plausible mechanisms for the protectiveness of whole grains. Am J Clin Nutr 70, 459S-463S. 

  41. Tada-Oikawa, S, Oikawa, S. and Kawanishi, S. 1998. Role of ultraviolet A-induced oxidative DNA damage in apoptosis via loss of mitochondrial membrane potential and caspase- 3 activation. Biochem Biophys Res Commun 247, 693-696. 

  42. Tait, S. W. and Green, D. R. 2010. Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11, 621-632. 

  43. Tirzitis, G. and Bartosz, G. 2010. Determination of antiradical and antioxidant activity: basic principles and new insights. Acta Biochim Pol 57, 139-142. 

  44. Velioglu, Y. S., Mazza, G., Gao, L. and Oomah, B. D. 1998. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J Agri Food Chem 46, 4113-4117. 

  45. Victor, V. M., Apostolova, N., Herance, R., Hernandez-Mijares, A. and Rocha, M. 2009. Oxidative stress and mitochondrial dysfunction in atherosclerosis: mitochondriatargeted antioxidants as potential therapy. Curr Med Chem 16, 4654-4667. 

  46. Woo, H. J., Oh, I. T., Lee, J. Y., Jun D. Y., Seu, M. C., Woo, K. S., Nam, M. H. and Kim, Y. H. 2012. Apigeninidin in duces apoptosis through activation of Bak and Bax and subsequent mediation of mitochondrial damage in human promyelocytic leukemia HL-60 cells. Proc Biochem 47, 1861-1871. 

  47. Zhou, S. H., Fang, Z. X., Lu, Y., Chen, J. C., Liu, D. H. and Ye, X. Q. 2009. Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.) pomace. Food Chem 112, 394-399. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로