$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

확장 칼만 필터를 활용한 Z-R 관계식의 매개변수 실시간 결정
Using Extended Kalman Filter for Real-time Decision of Parameters of Z-R Relationship 원문보기

Journal of Korea Water Resources Association = 한국수자원학회논문집, v.47 no.2, 2014년, pp.119 - 133  

김정호 (고려대학교 공과대학 건축사회환경공학부) ,  유철상 (고려대학교 공과대학 건축사회환경공학부)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 Z-R 관계식매개변수를 안정적인 값으로 실시간 예측하고자 확장 칼만 필터기법을 적용하였다. 이를 위해 Z-R 관계식의 비선형을 고려하여 확장 칼만필터로 매개변수 결정모형을 구축하였다. 상태-공간모형은Adamowski and Muir (1989)의 연구를 기반으로 구축하였다. 상태-공간 모형의 상태변수는 Z-R 관계식의 두 매개변수로 설정하였다. 결과적으로 칼만이득과 상태변수가 발산하지 않는 안정적인 모형을 구축하였다. 주목할 점으로는 기존 방법으로 추정된 과대 혹은 과소한 매개변수가 필터링 되어 일부 제거되었다는 것이다. 부적절한 매개변수의 적용은 물리적으로 비현실적인 강우강도 추정 결과를 불러일으키는 원인이기 때문에 이러한 결과는 정량적 강수량 추정측면에서 효과가 크다고 할 수 있다. 또한 확장 칼만 필터로 예측한 매개변수로 레이더 강우를 추정한 결과, 편의보정계수가 1.0에 근사하게 나타나 편의보정과정 없이도 지상 강우강도와의 평균적인 차이는 근소한 것으로 나타났다. 또한 기존 방법으로 레이더 강우를 추정한 결과보다 전반적으로 정확도 높은 강우 추정이 가능한 것으로 나타났다.

Abstract AI-Helper 아이콘AI-Helper

The study adopted extended Kalman filter technique in an effort to predict Z-R relationship parameter as a stable value in real-time. Toward this end, a parameter estimation model was established based on extended Kalman filter in consideration of non-linearity of Z-R relationship. A state-space mod...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
수문분야에서 레이더 강우는 어디에 이용되고 있나? 고해상도(high resolution)의 연속형 자료인 레이더 강우의 활용이 가능하였기 때문이다(Legates, 2000). 수문분야에서 레이더 강우는 주로 홍수범람 및 돌발홍수 예측을 목적으로 분포형 강우-유출 모형의 입력자료로 이용되고 있다. 이러한 레이더 강우는 지상우량 계로 관측된 강우보다 정량적 정확도는 상대적으로 떨어지나 광범위한 강우의 공간분포를 연속적으로 고려할 수 있다.
레이더 강우는 어떻게 추정되나? 레이더 강우는 기상레이더로부터 송신된 전자파가 강수입자에 반사되어 되돌아온 신호세기인 반사도(reflectivity, Z)로부터 추정된다. 강수입자에 대한 반사도는 지상강우강도(ground rain rate, R)와의 관계를 일련의 멱함수(power function)로 표현한 Z-R 관계식(Z=ARb, 식에서 매개변수 A는 상수항, b는 지수항)을 이용하여 강우강도로 변환된다.
정량적 강수량 추정에서 중요한 것은 무엇인가? QPE 과정에서 무엇보다 중요한 것은 Z-R 관계식의 매개변수 추정이다(Krajewski and Smith, 2002). 이와 관련된 연구는 1900년대 중반부터 시작되었으며, 처음에는 강수의 입자직경분포(Drop Size Distribution, DSD)로부터 매개 변수를 추정하였다(Marshall and Palmer, 1948; Twomey, 1952; Blanchard, 1953; Jones, 1956; Battan, 1973).
질의응답 정보가 도움이 되었나요?

참고문헌 (53)

  1. Adamowski, K., and Muir, J. (1989). "A Kalman filter modelling of space-time rainfall using radar and raingauge obervations." Canadian Journal of Civil Engineering, Vol. 16, No. 5, pp. 767-773. 

  2. Alfieri, L., Claps, P., and Laio, F. (2010). "Time-dependent Z-R relationship for estimating rainfall fields from radar measurements." Natural Hazards and Earth System Sciences, Vol. 10, pp. 149-158. 

  3. Bae, D.H., Lee, B.J., and Georgakakos, K.P. (2009). "Stochastic continuous storage function model with ensemble Kalman filtering( I ) : model development." Journal ofKoreaWater Resources Association, KWRA, Vol. 42, No. 11, pp. 953-961. 

  4. Battan, L.J. (1973). Radar observation of the atmosphere. The University of Chicago Press. Chicago, p. 324. 

  5. Blanchard, D.C. (1953). "Raindrop size distribution in Hawaiian rains." Journal ofMeteorology, Vol. 10, pp. 457-473. 

  6. Bolzern, P., Ferrario, M., and Fronza, G. (1980). "Adaptive real-time forecast of river flow-rates from rainfall data." Journal of Hydrology, Vol. 47, pp. 251-267. 

  7. Box, G.E.P., and Jenkins, G.M. (1976). Time series analysis; forecasting and control. revised edition, holden-day. 

  8. Bringi, V.N., and Chandrasekar, V. (2001). Polarimetric Doppler weather radar, principles and applications. Cambridge University Press, New York. 

  9. Brown, P.E., Diggle, P.J., Lord, M.E., and Young, P.C. (2001). "Space-time calibration of radar rainfall data." Applied Statistics, Vol. 50, pp. 221-242. 

  10. Chou, C.M., and Wang, R.Y. (2004). "Application of wavelet-bsed multi-model Kalman filters to real-time flood forecasting." Hydrological Processes, Vol. 18, pp. 987-1008. 

  11. Costa, M., and Alpuim, T. (2010). "Adjustment of state space models in view of area rainfall estimation." Environmetrics, Vol. 22, pp. 530-540. 

  12. Dan, S. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches, Wiley. 

  13. Eigbe, U., Beck, M.B., and Hirano, W.F. (1998). "Kalman filtering in groundwater flow modelling: problems and prospects." Stochastic Hydrology and Hydraulic, Vol. 12, pp. 15-32. 

  14. Francois, C., Quesney, A., and Ottle, C. (2003). "Sequential assimilation of ERS-1 SAR data into a coupled land surface-hydrological model using an extended Kalman filter." American Meterological Society, Vol. 4, No. 2, pp. 473-487. 

  15. Gelb, A. (1974). Applied optimal estimation. The MIT Press. 

  16. Habib, E., Malakpet, C.G., Tokay, A., and Kucera, P.A. (2008). "Sensitivity of streamflow simulation to temporal variability and estimation of Z-R relationships." Journal of Hydrologic Engineering, ASCE, Vol. 13, No. 12, pp. 1177-1186. 

  17. Harter R.M. (1990). An estimation of rainfall amounts using radar-drived Z-R relationships. Master of Science Thesis, Purdue University. 

  18. Hebson, C., and Wood, E.F. (1985). "Partitioned state and parameter estimation for real-time flood forecasting." Applied Mathematics and Computation, Vol. 17, pp. 357-374. 

  19. Henschke, A., Habib, E., and Pathak, C.S. (2009). "Adjustment of the Z-R relationship in real-time for use in South Florida." World Environmental and Water Resources Congress 2009, ASCE, pp. 6069-6080. 

  20. Jang, S.G. (2002). Combining forecast methods of Chungju dam streamflow using Kalman filter. Master of Science, dissertation, Seoul National University. 

  21. Jones, D.M.A. (1956). Rainfall drop-size distribution and radar reflectivity. Research Report 6, Urbana, Meteor. Lab., Illinois State Water Survey. 

  22. Jung, S.H., Kim, K,E., and Ha, K.J. (2005). "Real-time estimation of improved radar rainfall intensity using rainfall intensity measured by rain gauges." Asia-Pacific Journal of Atmospheric Sciences, Vol. 41, No. 5, pp. 751-762. 

  23. Kalman, R.E. (1960). "A new approach to linear filtering and prediction problems." Transactions of the ASME -Journal of Basic Engineering, No. 82 (Series D), pp. 35-45. 

  24. Kim, K.H. (1999). Speed sensorless vector control of an induction motor using an extended Kalman filter. Master of Science, dissertation, Korea University. 

  25. Kotarou T., Takumi, N., and Takaaki, Y. (1995). "Operational calibration of raingauge radar by 10-minute telemeter rainfall." 3rd Int. Sympos. on Wea. Radars, Sao Paulo, Brazil, pp. 75-81. 

  26. Krajewski, W.F., and Smith, J.A. (2002). "Radar hydrology: rainfall estimation." Advances inWater Resources, Vol. 25, pp. 1387-1394. 

  27. Lee, Y.H., and Singh, V.P. (1998). "Application of the Kalman filter to the Nash model." Hydrological Processes, Vol. 12 pp. 755-767. 

  28. Legates, D.R. (2000). "Real-time calibration of radar precipitation estimates." The Professional Geographer, Vol. 52, No. 2, pp. 235-246. 

  29. Leung, H., Zhu, Z., and Ding, Z. (2000). "An aperiodic phenomenon of the extended Kalman filter in filtering noisy chaotic signals." IEEE Trans. Signal Process, Vol. 48, No. 6, pp. 1807-1810. 

  30. Lin, D.S and Krajewski, W.F. (1989) "Recursive methods of estimating radar-rainfall field bias. Preprints." 24rd Radar Meteorology conference, AMS, Florida, MA, pp. 648-651. 

  31. Macias, J.A., and Gomez, A. (2006). "Self-tuning of Kalman filters for harmonic computation." IEEE Trans. Power Del., Vol. 21, No. 1, pp. 501-503. 

  32. Marshall, J.S., and Palmer, W.M. (1948). "The distribution of raindrop with size." Journal ofAtmospheric Sciences, Vol. 5, pp. 165-166. 

  33. METRI (2002). Development of METRI X-band doppler weather radar operations and radar data analysis technique II. Meteorological Research Institute Korea Meteorological Administration (METRI), pp. 103-104. 

  34. Michelson, D.B., and Koistinen, J. (2000). "Gauge-radar network adjustment for the baltic sea experiment." Physics and Chemistry of the Earth(B), Vol. 25, No. 10-12, pp. 915-920. 

  35. Mohr, C.G., and Vaughan, R.L. (1979). "An economical procedure for cartesian interpolation and display of reflectivity factor data in three-dimensional space." Journal of Applied Meteorology, Vol. 18, No. 5, pp. 661-670. 

  36. Murty, Y.V.V.S., and Smolinski, W.J. (1988). "Design and implementation of a digital differential relay for a 3-phase power transformer based on Kalman filtering theory." IEEE Trans. Power Del., Vol. 3, No. 2, pp. 525-533 

  37. O'Connell, P.E., and Clarke, R.T. (1981). "Adaptive hydrological forecasting-a review." Hydrological Sciences, Vol. 26, No. 2, pp. 179-205. 

  38. Park, S.W(1993). Real-time flood forecasting by transfer function types model and filtering algorithm. Ph. D. dissertation, Dongguk University. 

  39. Puente, C.E., and Bras, R.L. (1987). "Application of nonlinear filtering in the real time forecasting of river flows." Water Resources Research, Vol. 23, No. 4, pp. 675-682. 

  40. Rendon, S.H., Vieux, B.E., and Pathak, C.S. (2011). "Deriving radar specific Z-R relationships for hydrologic operations." World Environmental and Water Resources Congress. 

  41. Rendon, S.H., Vieux, B.E., and Pathak, C.S. (2012). "Continuous forecasting and evaluation of derived Z-R relationships in a sparse rain gauge network using NEXRAD." Journal of Hydrologic Engineering, accepted January 6 2012, posted ahead of print. 

  42. Rosenfeld, D., Wolff, D.B., and Amitai, E. (1994). "The window probability matching method for rainfall measurements with radar." Journal ofApplied Meteorology, Vol. 33, pp. 682-693. 

  43. Sage, A., and Husa, G.W. (1969). "Adaptive filtering with unknown prior statistics." Joint Automatic Control Conference, pp. 760-769. 

  44. Schmidt, S.F. (1970). "Computational techniques in Kalman filtering, in theory and applications of Kalman filtering." AGARDograph 139, NATO Advisory Group for Aerospace Research and Development, London. 

  45. Seo, B.H., and Gang, G.W. (1985). "A hydrologic prediction of streamflows for flood forecasting and warning system." Journal of Korea Water Resources Association, KWRA, Vol. 18, No. 2, pp. 153-161. 

  46. Smith, J.A., and Krajewski, W.F. (1991). "Estimation of the mean field bias of radar rainfall estimates." Journal of Applied Meteorology, Vol. 30, pp. 397-412. 

  47. Steiner M., and Smith J.A, (2000). "Reflectivity, rain rate, and kinetic energy flux relationships based on raindrop spectra." Journal of Applied Meteorology, Vol. 39, pp. 1923-1940. 

  48. Twomey, S. (1952). "On the measurement of precipitation intensity by radar." Journal ofMeteorology, Vol. 10, pp. 66-67. 

  49. Uijlenhoet, R., Steiner, M., and Smith, J.A. (2003). "Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation." Journal of Hydrology, Vol. 4, pp. 43-61. 

  50. Wang, C.H., and Bai, Y.L. (2008). "Algorithm for real time correction of stream flow concentration based on Kalman filter." Journal of Hydrologic Engineering, Vol. 13, pp. 290-296. 

  51. Wang, G.T., Yu, Y.-S., and Wu, K. (1987). "Improved flood routing by ARMA modelling and the Kalman filter technique." Journal of Hydrology, Vol. 93, pp. 175-190. 

  52. Yoo, C., Ha, E., Kim, B., Kim, K., and Choi, J. (2008). "Sampling error of areal average rainfall due to radar partial coverage." Journal of Korea Water Resources Association, KWRA, Vol. 41, No. 5, pp. 545-558. 

  53. Yoo, C., Kim, J., Chung, J.H., and Yang, D.M. (2011). "Mean field bias correction of the very short range forecast rainfall using the Kalman filter." Korean Society ofHazard Mitigation, Vol. 11, No. 3, pp. 17-28. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로