최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기한국지구과학회지 = Journal of the Korean Earth Science Society, v.35 no.1, 2014년, pp.69 - 87
박노욱 (인하대학교 지리정보공학과)
This paper suggests a conditional simulation framework based on multiple data transformations for geostatistical simulation of compositional data. First, log-ratio transformation is applied to original compositional data in order to apply conventional statistical methodologies. As for the next trans...
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
지구통계학적 시뮬레이션이 활용되는 예로는 무엇이 있는가? | 특히 지구통계학적 시뮬레이션은 단일 위치나 동시에 여러 위치에서 고려하고 있는 속성값의 불확실성 추정에 활용될 수 있다(Goovaerts, 1997; Deutsch and Journel, 1998; Chilès and Delfiner, 2012). 예를 들어 특정 지역에서 측정 단위보다 큰 블록 단위에서 오염 임계치를 초과할 확률을 계산하거나, 2차 분석에 사용되는 모델에 입력 자료의 불확실성 전파 등을 정량적으로 모델링하는데 사용될 수 있다(Kyriakidis and Dungan, 2001; Saito and Goovaerts, 2003; Wang et al., 2003; Park and Oh, 2006; Goovaerts et al. | |
주성분 변환의 단점은 무엇인가? | 다변량 자료들을 서로 상관성이 없는 자료로의 변환 방법으로 가장 널리 사용되어온 방법론은 주성분 변환(principal component transformation)이다. 그러나 주성분 변환은 이격 거리가 ‘0’인 경우에만 상관성이 없는 변수들로 변환을 수행하고, 다른 이격 거리에서는 상관성이 존재하는 단점이 있다(Goovaerts, 1993). 이러한 단점을 보완하기 위해 이격 거리가 ‘0’인 경우와 또 다른 이격 거리에서 상관성이 없는 변수로의 선 형 변환을 수행하는 MAF 변환이 제안되었고(Switzer and Green, 1984), 이후 지구통계학적 시뮬레이션에 많이 적용되어 왔다(Desbarats and Dimitrakopoulos, 2000; Vargas-Guzmán and Dimitrakopoulos, 2003; Boucher and Dimitrakopoulos, 2009) | |
지구과학 자료는 어떻게 구분되는가? | 지구과학 자료는 값 자체의 연산이 가능한 연속형 자료와 서로 구별이 되는 몇 개의 범주로 구성된 범 주형 자료로 구분할 수 있다(Davis, 2002). 연속형 자료 중에서 퇴적물 혹은 토양의 성분 자료는 전체에 대한 상대적인 비율 정보를 제공하는 구성 자료 (compositional data)에 해당된다. |
Aitchison, J., 1986, The statistical analysis of compositional data. Chapman and Hall, London, UK, 416 p.
Boucher, A. and Dimitrakopoulos, R., 2009, Block-support simulation of multiple correlated variables. Mathematical Geosciences, 41, 215-237.
Buttafuoco, G., Conforti, M., Aucelli, P.P.C., Robustelli, G., and Scarciglia, F., 2012, Assessing spatial uncertainty in mapping soil erodibility factor using geostatistical stochastic simulation. Environmental Earth Sciences, 66, 1111-1125.
Chiles, J.-P. and Delfiner, P., 2012, Geostatistics: Modeling spatial uncertainty. Wiley, New York, USA, 734 p.
Davis, J.C., 2002, Statistics and data analysis in geology. Wiley, New York, USA, 656 p.
Deutsch, C.V. and Journel, A.G., 1998, GSLIB: Geostatistical Software Library and User's Guide. Oxford University Press, New York, USA, 369 p.
Emery, X. and Galvez, I., 2012, A plurigaussian model for simulating regionalized compositions. In Abrahamsen, P., Hauge, R., and Kolbjornsen, O. (eds.), Geostatistics Oslo 2012. Springer, New York, USA, 39-50.
Goovaerts, P., 1993, Spatial orthogonality of the principal components computed from coregionalized variables. Mathematical Geology, 25, 281-302.
Goovaerts, P., 1997, Geostatistics for natural resources evaluation. Oxford University Press, New York, USA, 483 p.
Goovaerts, P., 2009, AUTO-IK: A 2D indicator kriging program for the automated non-parametric modeling of local uncertainty in earth sciences. Computers & Geosciences, 35, 1255-1270.
Goovaerts, P., 2010, Combining areal and point data in geostatistical interpolation: applications to soil science and medical geography. Mathematical Geosciences, 42, 535-554.
Goovaerts, P., Trinh, H.T., Demond, A., Franzblau, A., Garabrant, D., Gillespie, B., Epkowski, J., and Adriaens, P., 2008, Geostatistical modeling of the spatial distribution of soil dioxins in the vicinity of an incinerator. 1. theory and application to Midland, Michigan. Environmental Science & Technology, 42, 3648-3654.
Jang, D.-H., Kim, J.-S., and Park, N.-W., 2010, Characteristics variation of the sedimentary environment in winter season around the Baramarae beach of Anmyondo using surface sediment analysis. Journal of the Korean Geomorphological Association, 17, 15-27. (in Korean)
Kyriakidis, P.C., Miller, N.L., and Kim, J., 2004, A spatial time series framework for simulating daily precipitation at regional scales. Journal of Hydrology, 297, 236-255.
Lark, R.M. and Bishop, T.F.A., 2007, Cokriging particle size fractions of the soil. European Journal of Soil Science, 58, 763-774.
Lark, R.M., Dove, D., Green, S.L., Richardson, A.E., Stewart, H., and Stevenson, A., 2012, Spatial prediction of seabed sediment texture classes by cokriging from a legacy database of point observations. Sedimentary Geology, 281, 35-49.
Lee, S.-W., Park, N.-W., Jang, D.-H., Yoo, H.Y., and Lim, H., 2012, Surface sediments classification in tidal flats using multivariate kriging and KOMPSAT-2 imagery. Journal of the Korean Geomorphological Association, 19, 37-49.
Martin-Fernandez, J.A. and Thio-Henestrosa, S., 2006, Rounded zeros: Some practical aspects for compositional data. In Buccianti, A., Mateu-Figueras, G., and Pawlowsky-Glahn, V. (eds.), Compositional data analysis in the geosciences: From theory to practice. Geological Society of London, UK, 191-201.
Odeh, I.O.A., Todd, A.J., and Triantafilis, J., 2003, Spatial prediction of soil particle-size fractions as compositional data. Soil Science, 168, 501-515.
Oh, J.-K. and Kum, B.-C., 2001, Depositional environments and characteristics of surface sediments in the nearshore and offshore the mid-western coast of the Korean peninsula. Journal of the Korean Earth Science Society, 22, 377-387. (in Korean)
Oh, S., 2005, RMR evaluation by integration of geophysical and borehole data using non-linear indicator transform and 3D kriging. Journal of the Korean Earth Science Society, 26, 429-435. (in Korean)
Oz, B., Deutsch, C.V., Tran, T.T., and Xie, Y., 2003, DSSIM-HR: A FORTRAN 90 program for direct sequential simulation with histogram reproduction. Computers & Geosciences, 29, 39-51.
Park, N.-W. and Jang, D.-H., 2014, Comparison of geostatistical kriging algorithms for intertidal surface sediment facies mapping with grain size data. The Scientific World Journal, (in press).
Park, N.-W. and Oh, S., 2006. Application of geostatistical simulation to assessment of the effects of uncertainty of spatial data in mineral potential prediction. Journal of the Korean Society of Mineral and Energy Resources Engineers, 43, 213-223. (in Korean)
Pawlowsky-Glahn, V. and Buccianti, A., 2011, Compositional data analysis: Theory and applications. Wiley, Chichester, UK, 400 p.
Pawlowsky-Glahn, V. and Olea, A., 2004, Geostatistical analysis of compositional data. Oxford University Press, New York, USA, 304 p.
Poppe, L.J., Eliason, A.H., and Hastings, M.E., 2003, A visual basic program to classify sediments based on gravel-sand-silt-clay ratios. Computers & Geosciences, 29, 805-809.
Rondon, O., 2012, Teaching aid: Minimum/maximum autocorrelation factors for joint simulation of attributes. Mathematical Geosciences, 44, 469-504.
Saito, H. and Goovaerts, P., 2003, Selective remediation of contaminated sites using a two-level multiphase strategy and geostatistics. Environmental Science & Technology, 37, 1912-1918.
Shepard, F.P., 1954, Nomenclature based on sand-silt-clay ratios. Journal of Sedimentary Petrology, 24, 151-158.
Shin, D.-H., Kum, B.-C., Park, E.Y., Lee, H.-I., and Oh, J.-K., 2004, Seasonal sedimentary characteristics and depositional environments after the construction of seawall on the Iwon macrotidal flat. Journal of the Korean Earth Science Society, 25, 615-628. (in Korean)
Switzer, P. and Green, A.A., 1984, Min/Max autocorrelation factors for multivariate spatial imagery. Technical Report No. 6, Department of Statistics, Stanford University, Stanford, USA, 14 p.
Vargas-Guzman, A. and Dimitrakopoulos, R., 2003, Computational properties of min/max autocorrelation factors. Computers & Geosciences, 29, 715-723.
Wang, G., Gernter, G.Z., Fang, S., and Anderson, A.B., 2003, Mapping multiple variables for predicting soil loss by joint sequential co-simulation with TM images and slope map. Photogrammetric Engineering & Remote Sensing, 69, 889-898.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.