$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Cultivation of a New Microalga, Micractinium reisseri, in Municipal Wastewater for Nutrient Removal, Biomass, Lipid, and Fatty Acid Production 원문보기

Biotechnology and bioprocess engineering : Bbe, v.19 no.3, 2014년, pp.510 - 518  

Abou-Shanab, Reda A.I. (Department of Environmental Engineering, Yonsei University) ,  El-Dalatony, Marwa M. (Department of Environmental Engineering, Yonsei University) ,  EL-Sheekh, Mostafa M. (Department of Botany, Faculty of Science, Tanta University) ,  Ji, Min-Kyu (Department of Environmental Engineering, Yonsei University) ,  Salama, El-Sayed (Department of Environmental Engineering, Yonsei University) ,  Kabra, Akhil N. (Department of Environmental Engineering, Yonsei University) ,  Jeon, Byong-Hun (Department of Environmental Engineering, Yonsei University)

Abstract AI-Helper 아이콘AI-Helper

Coupling of advanced wastewater treatment with microalgae cultivation for low-cost lipid production was demonstrated in this study. The microalgal species Micractinium reisseri and Scenedesmus obliquus were isolated from municipal wastewater mixed with agricultural drainage. M. reisseri was selected...

주제어

참고문헌 (44)

  1. Biotechnol. Adv. Y. Chisti 25 294 2007 10.1016/j.biotechadv.2007.02.001 Chisti, Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. 

  2. Bioresour. Technol. J. T. Ellis 111 491 2012 10.1016/j.biortech.2012.02.002 Ellis, J. T., N. N. Hengge, R. C. Sims, and C. D. Miller (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour. Technol. 111: 491-495. 

  3. Biotechnol. Bioproc. Eng. C. W. Kim 19 150 2014 10.1007/s12257-013-0468-0 Kim, C. W., M. Moon, W.-K. Park, G. Yoo, Y.-E. Choi, and J.-W. Yang (2014) Energy-efficient cultivation of Chlamydomonas reinhardtii for lipid accumulation under flashing illumination conditions. Biotechnol. Bioproc. Eng. 19: 150-158. 

  4. Bioresour. Technol. A. L. Smith 122 149 2012 10.1016/j.biortech.2012.04.055 Smith, A. L., L. B. Stadler, N. G. Love, S. J. Skerlos, and L. Raskin (2012) Perspectives on anaerobic membrane bioreactor treatment of domestic wastewater: A critical review. Bioresour. Technol. 122: 149-159. 

  5. J. Environ. Manage. R. A. Abou-Shanab 115 257 2013 10.1016/j.jenvman.2012.11.022 Abou-Shanab, R. A., I. M.-K. Ji, H.-C. Kim, K.-J. Paeng, and B.-H. Jeon (2013) Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J. Environ. Manage. 115: 257-264. 

  6. Appl. Microbiol. Biotechnol. M.-K. Ji 97 2701 2013 10.1007/s00253-012-4097-x Ji, M.-K., H.-C. Kim, V. R. Sapireddy, H.-S. Yun, R. A. I. Abou- Shanab, J. Choi, W. Lee, T. C. Timmes, Inamuddin, and B.-H. Jeon (2013) Simultaneous nutrient removal and lipid production from pretreated piggery wastewater by Chlorella vulgaris YSW-04. Appl. Microbiol. Biotechnol. 97: 2701-2710. 

  7. Water Res. P. G. Octavio 45 11 2011 10.1016/j.watres.2010.08.037 Octavio, P. G., M. E. Froylan, L. E. de-Bashan, and B. Yoav (2011) Heterotrophic cultures of microalgae: Metabolism and potential product. Water Res. 45: 11-36. 

  8. Bioresour. Technol. J. K. Pittman 102 17 2011 10.1016/j.biortech.2010.06.035 Pittman, J. K., A. P. Dean, and O. Osundeko (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102: 17-25. 

  9. Biotechnol. Adv. D. E. Van 30 1405 2012 10.1016/j.biotechadv.2012.02.015 Van, D. E., S. H. Vervaeren, and N. Boon (2012) Flue gas compounds and microalgae: (Bio-) chemical interactions leading to biotechnological opportunities. Biotechnol. Adv. 30: 1405-1424. 

  10. Bioresour. Technol. A. Ruiz-Martinez 126 247 2012 10.1016/j.biortech.2012.09.022 Ruiz-Martinez, A., G. N. Martin, I. Romero, A. Seco, and J. Ferrer (2012) Microalgae cultivation in wastewater: Nutrient removal from anaerobic membrane bioreactor effluent. Bioresour. Technol. 126: 247-253. 

  11. Bioresour. Technol. B. Cheirsilp 110 510 2012 10.1016/j.biortech.2012.01.125 Cheirsilp, B. and S. Torpee (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510-516. 

  12. Appl. Biochem. Biotechnol. L. Wang 162 1174 2009 10.1007/s12010-009-8866-7 Wang, L., M. Min, Y. Li, P. Chen, Y. Chen, Y. Liu, Y. Wang, and R. Ruan (2009) Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Appl. Biochem. Biotechnol. 162: 1174-1186. 

  13. Bioresour. Technol. I. Godos 101 5150 2010 10.1016/j.biortech.2010.02.010 Godos, I., V. A. Vargas, S. Blanco, B. C. Gonzalez, R. Soto, P. A. Garcia-Encina, E. Becares, and R. Munoz (2010) A comparative evaluation of microalgae for the degradation of piggery wastewater under photosynthetic oxygenation. Bioresour. Technol. 101: 5150-5158. 

  14. T. Kanz 1969 Physiological Studies, Morphological and Taxonomical Investigation of Nostoc and Anabaena in Culture Kanz, T. and H. C. Bold (1969) Physiological Studies, Morphological and Taxonomical Investigation of Nostoc and Anabaena in Culture. Publication No. 6924. University of Texas, Austin, Texas. 

  15. D. M. John 39 2003 The freshwater algal flora of the British Isles: Identification guide to freshwater and terrestrial algae 2nd ed. John, D. M., B. A. Whitton, and A. J. Brook (2003) The freshwater algal flora of the British Isles: Identification guide to freshwater and terrestrial algae. 2nd ed., pp. 39-43. Cambridge University Press, London, UK. 

  16. Front. Zool. R. Sonnenberg 4 1 2007 10.1186/1742-9994-4-6 Sonnenberg, R., A. W. Nolte, and D. Tautz (2007) An evaluation of LSU rDNA D1-D2 sequences for their use in species identification. Front. Zool. 4: 1-12. 

  17. Nucleic Acids Res. S. F. Altschul 25 3389 1997 10.1093/nar/25.17.3389 Altschul, S. F., L. M. Thomas, A. S. Alejandro, Z. Jinghui, Z. Zheng, and M. Webb (1997) Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402. 

  18. Mol. Biol. Evol. K. Tamura 24 1596 2007 10.1093/molbev/msm092 Tamura, K. and J. Dudley (2007) Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599. 

  19. Appl. Energ. L. Jiang 88 3336 2011 10.1016/j.apenergy.2011.03.043 Jiang, L., S. Luo, X. Fan, Z. Yang, and R. Guo (2011) Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Appl. Energ. 88: 3336-3341. 

  20. Ecol. Eng. M.-K. Ji 58 142 2013 10.1016/j.ecoleng.2013.06.020 Ji, M.-K., R. A. I. Abou-Shanab, S.-H. Kim, E.-S. Salama, S.-H. Lee, A.-N. Kabra, Y.-S. Lee, S. Hong, and B.-H. Jeon (2013) Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecol. Eng. 58: 142-148. 

  21. APHA 1995 Standard Methods for the Examination of Water and Wastewater 19th ed. APHA (1995) Standard Methods for the Examination of Water and Wastewater. 19th ed., APHA, Washington, D. C. 

  22. Can. J. Biochem. Physiol. E. G. Bligh 37 911 1959 10.1139/o59-099 Bligh, E. G. and W. J. Dyer (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. 

  23. J. Lipid Res. G. Lepage 25 1391 1984 10.1016/S0022-2275(20)34457-6 Lepage, G. and C. C. Roy (1984) Improved recovery of fatty acid through direct transesterification without prior extraction or purification. J. Lipid Res. 25: 1391-1396. 

  24. H. C. Lund 1995 Freshwater algae: Their microscopic world explored Lund, H. C. and J. W. G. Lund (1995) Freshwater algae: Their microscopic world explored. Dah Hua Ltd, Hong Kong, China. 

  25. Sci. Res. Ess. C. Dayananda 5 2497 2010 Dayananda, C., A. Kumudha, R. Sarada, and G. A. Ravishankar (2010) Isolation, characterization and outdoor cultivation of green microalgae Botryococcus sp. Sci. Res. Ess. 5: 2497-2505. 

  26. Appl. Energ. R. A. I. Abou-Shanab 88 3300 2011 10.1016/j.apenergy.2011.01.060 Abou-Shanab, R. A. I., J.-H. Hwang, Y. Cho, B. Min, and B.-H. Jeon (2011) Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production. Appl. Energ. 88: 3300-3306. 

  27. Can. J. Botany. I. E. Huertas 76 1104 1998 Huertas, I. E. and L. M. Lubian (1998) Comparative study of dissolved inorganic carbon utilization and photosynthetic responses in Nannochloris (Chlorophyceae) and Nannochloropsis (Eustigmatophyceae) species. Can. J. Botany. 76: 1104-1108. 

  28. Bioresour. Technol. C. Yeesang 102 3034 2011 10.1016/j.biortech.2010.10.013 Yeesang, C. and B. Cheirsilp (2011) Effect of nitrogen, salt, and iron content in the growth medium and light intensity on lipid production by microalgae isolated from freshwater sources in Thailand. Bioresour. Technol. 102: 3034-3040. 

  29. Q. Hu 83 2004 Handbook of Microalgal Culture: Biotechnology and Applied Phycology Hu, Q. (2004) Environmental effects on cell composition. pp. 83-93. In: Richmond, A. (ed.), Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science, Victoria. 

  30. E. W. Becker 56 1994 Microalgae: Biotechnology and Microbiology Becker, E. W. (1994) Microalgae: Biotechnology and Microbiology. pp. 56-62. Cambridge University Press, UK. 

  31. Trend Biotechnol. Y. Chisti 26 126 2008 10.1016/j.tibtech.2007.12.002 Chisti, Y. (2008) Biodiesel from microalgae beats bioethanol. Trend Biotechnol. 26: 126-131. 

  32. A. Richmond 104 2004 Handbook of microalgal culture: Biotechnology and Applied Phycology Richmond, A. (2004) Handbook of microalgal culture: Biotechnology and Applied Phycology. pp. 104-105. Blackwell Science Ltd., Oxford, UK. 

  33. Enz. Microb. Tech. M. V. Jimenez-Perez 34 392 2004 10.1016/j.enzmictec.2003.07.010 Jimenez-Perez, M. V., P. Sanches-Castillo, O. Romera, D. Fernandez-Moreno, and C. Perez-Martinez (2004) Growth and nutrient removal in free and immobilized planktonic green algae isolated from pig manure. Enz. Microb. Tech. 34: 392-398. 

  34. Ecol. Eng. S. Aslan 28 64 2006 10.1016/j.ecoleng.2006.04.003 Aslan, S. and I. K. Kapdan (2006) Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecol. Eng. 28: 64-70. 

  35. Biotechnol. Bioproc. Eng. K. Lee 6 194 2001 10.1007/BF02932550 Lee, K. and C.-G. Lee (2001) Effect of light/dark cycles on wastewater treatments by microalgae. Biotechnol. Bioproc. Eng. 6: 194-199. 

  36. J. Phycol. G. Ahlgren 39 906 2003 10.1046/j.1529-8817.2003.02026.x Ahlgren, G. and P. Hyenstrand (2003) Nitrogen limitation effects of different nitrogen sources on the nutritional quality of two freshwater organisms, Scenedesmus quadricauda (Chlorophyceae) and Synechococcus sp. (Cyanophyceae). J. Phycol. 39: 906-917. 

  37. Environ. Technol. P. Westerhoffa 31 523 2010 10.1080/09593330903552078 Westerhoffa, P., Q. Hub, M. Esparza-Sotoc, and W. Vermaasd (2010) Growth parameters of microalgae tolerant to high levels of carbon dioxide in batch and continuous-flow photobioreactors. Environ. Technol. 31: 523-532. 

  38. J. Appl. Phycol. B. Pushparaj 9 113 1997 10.1023/A:1007988924153 Pushparaj, B., E. Pelosi, M. R. Tredici, E. Pinzani, and R. Materassi (1997) An integrated culture system for outdoor production of microalgae and cyanobacteria. J. Appl. Phycol. 9: 113-119. 

  39. Energy Fuels G. Knothe 22 1358 2008 10.1021/ef700639e Knothe, G. (2008) “Designer” biodiesel: Optimizing fatty ester composition to improve fuel properties. Energy Fuels 22: 1358-1364. 

  40. Bioproc. Biosyst. Eng. E.-S. Salama 36 827 2013 10.1007/s00449-013-0919-1 Salama, E.-S., H.-C. Kim, R. A. I. Abou-Shanab, M.-K. Ji, Y.-K. Oh, S.-H. Kim, and B.-H. Jeon (2013) Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonasmexicana and Scenedesmus obliquus grown under salt stress. Bioproc. Biosyst. Eng. 36: 827-833. 

  41. Int. J. Mol. Sci. S. Chinnasamy 10 518 2009 10.3390/ijms10020518 Chinnasamy, S., B. Ramakrishnan, A. Bhatnagar, and K. Das (2009) Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int. J. Mol. Sci. 10: 518-532. 

  42. Energ. Convers. Manage. M. G. Morais de 48 2169 2007 10.1016/j.enconman.2006.12.011 de Morais, M. G. and J. A. Costa (2007) Isolation and selection of microalgae from coal fired thermoelectric power plant for biofixationof carbon dioxide. Energ. Convers. Manage. 48: 2169-2173. 

  43. Energ. J. V. Wang 5 731 2012 10.3390/en5030731 Wang, J. V., T. W. Miller, S. Hobbs, P. Hook, B. Crowe, and M. Huesemann (2012) Effects of light and temperature on fatty acid production in Nannochloropsis Salina. Energ. 5: 731-740. 

  44. Biotechnol. Bioproc. Eng. W.-Y. Choi 16 946 2011 10.1007/s12257-010-0394-3 Choi, W.-Y., S.-H. Oh, Y.-C. Seo, G.-B. Kim, D.-H. Kang, S.-Y. Lee, K.-H. Jung, J.-S. Cho, J.-H. Ahn, G.-P. Choi, and H.-Y. Lee (2011) Effects of methanol on cell growth and lipid production from mixotrophic cultivation of Chlorella sp. Biotechnol. Bioproc. Eng. 16: 946-955. 

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로