$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

액적 기반의 미세유체 시스템을 이용한 초고속 대용량 스크리닝
Droplet-based Microfluidic Device for High-throughput Screening 원문보기

Korean chemical engineering research = 화학공학, v.52 no.2, 2014년, pp.141 - 153  

정헌호 (충남대학교 화학공학과) ,  노영무 (충남대학교 화학공학과) ,  장성찬 (충남대학교 화학공학과) ,  이창수 (충남대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

액적기반의 미세유체 시스템은 마이크로 시험관으로서 화학, 생물학 연구에 적용하기 위해 개발되었다. 미세유체 시스템에서 피코부피(picoliter)의 매우 작은 액적은 소형화된 시스템 내에서 잘 정형화 되고 구획화된 반응기로 제공되어 진다. 매우 작은 액적에서의 반응은 자동화된 초고속 대용량 스크리닝 시스템을 통하여 저가이면서 고효율적으로 수행될 수 있다. 본 총설에서는 액적 기반의 미세유체시스템의 기능들인 액적 형성, 정교한 액적 제어, 다양한 응용분야에 대해 소개하고자 한다. 또한 화학적, 생물학적 새로운 응용분야에 관해 알아보고, 기존의 방법과 비교하여 액적기반의 미세유체 시스템이 갖는 장점에 관해 논의하고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Droplet based microfluidic systems have been developed for the application of biological and chemical research field. A picoliter droplet in microfluidic device provides a compartmentalized and well-defined reactor in miniaturized system. The microfluidic system with small droplets can reduce reagen...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
미세유체 채널 내에서 유체는 어떤 특징을 보이는가? 미세유체 채널 내에서 유체는 층류(laminar flow) 흐름을 보이며, 두 물질의 혼합은 확산으로만 이루어진다는 특징이 있다. 또한 체적에 대한 표면적이 넓다는 특징이 있고, 관성보다는 표면장력의 영향을 많이 받는다.
T자 형태로 접해있는 채널을 이용한 액적 형성 방법이란 무엇인가? 1A). T 자형태의 채널 접합부(T-junction)에서 서로 섞이지 않는 두 유체를 만나게 하여 유체의 흐름 차에 의해 액적을 형성하는 방법이다[16]. Tjunction 채널에는 Inlet을 통하여 연속상(continuous phase)과 분산상(dispersed phase)을 주입하면 접합부에서 두 유체가 만나게 되며 분산상의 앞부분이 주 채널로 들어오게 되고, 주 채널을 흐르는 연속상의 전단력(shear force)에 의해 목 부분에서 분산상이 점차 가늘어지다가 끊어지게 된다.
미세유체 기술의 장점은 무엇인가? 흔히 손가락만한 크기의 시스템 하나로 실험실에서 수행할 수 있는 연구를 가능하게 하는 “랩온어칩”(Lab-on-a-chip)의 기본 기술로 각광을 받고 있다[4-6]. 미세유체 시스템은 값비싼 시약을 매우 적은 부피만으로 실험이 가능하여 비용이 절감되는 장점이 있다[7]. 또한 매우 빠른 혼합으로 인한 반응시간 단축, 고감도의 검출, 자동화가 가능하여 초고속 대용량 스크리닝(High-throughput screening) 기술로 이용될 수 있다[8,9]. 최근의 미세유체시스템은 단 한번의 실험으로 다양한 조건의 실험을 할 수 있는 기술, 재사용(reusable) 및 휴대(portable)가 가능한 시스템, 그리고 외부 동력시스템인 시린지 펌프 없이(pump-less) 피펫만으로 구동이 가능한 시스템이 개발되어 사용자가 매우 편리하게 이용할 수 있는 수준까지 개발이 되고 있다[10-14].
질의응답 정보가 도움이 되었나요?

참고문헌 (82)

  1. Huebner, A., S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. Demello, "Microdroplets: A Sea of Applications?," Lab Chip, 8(8), 1244-1254(2008). 

  2. Theberge, A. B., Courtois, F., Schaerli, Y., Fischlechner, M., Abell, C., Hollfelder, F. and Huck, W. T. S., "Microdroplets in Microfluidics: An Evolving Platform for Discoveries in Chemistry and Biology," Angew. Chem. Int. Edit., 49(34), 5846-5868(2010). 

  3. Kovarik, M. L., Gach, P. C., Ornoff, D. M. Wang, Y. L., Balowski, J., Farrag, L. and Allbritton, N. L., "Micro Total Analysis Systems for Cell Biology and Biochemical Assays," Anal. Chem., 84(2), 516-540(2012). 

  4. Whitesides, G. M., "The Origins and the Future of Microfluidics," Nature, 442(7101), 368-373(2006). 

  5. Song, H. M. and Lee, C. S., "Simple Fabrication of Functionalized Surface with Polyethylene Glycol Microstructure and Glycidyl Methacrylate Moiety for the Selective Immobilization of Proteins and Cells," Korean J. Chem. Eng., 25(6), 1467-1472(2008). 

  6. Lee, J. H., Kim, H. E., Im, J. H., Bae, Y. M., Choi, J. S., Huh, K. M. and Lee, C. S., "Preparation of Orthogonally Functionalized Surface Using Micromolding in Capillaries Technique for the Control of Cellular Adhesion," Colloids Surf. B: Biointerfaces, 64(1), 126-134(2008). 

  7. Chiu, D. T., Lorenz, R. M. and Jeffries, G. D. M., "Droplets for Ultrasmall-Volume Analysis," Anal. Chem., 81(13), 5111-5118(2009). 

  8. Choi, C. H., Prasad, N., Lee, N. R. and Lee, C. S., "Investigation of Microchannel Wettability on the Formation of Droplets and Efficient Mixing in Microfluidic Devices," Biochip J., 2(1), 27-32 (2008). 

  9. Teh, S. Y., Lin, R., Hung, L. H. and Lee, A. P., "Droplet Microfluidics," Lab Chip, 8(2), 198-220(2008). 

  10. Jeong, H. H., Lee, S. H., Kim, J. M., Kim, H. E., Kim, Y. G., Yoo, J. Y., Chang, W. S. and Lee, C. S., "Microfluidic Monitoring of Pseudomonas Aeruginosa Chemotaxis Under the Continuous Chemical Gradient," Biosens. Bioelectron., 26(2), 351-6(2010). 

  11. Kim, K. P., Kim, Y. G., Choi, C. H., Kim, H. E., Lee, S. H., Chang, W. S. and Lee, C. S., "In situ Monitoring of Antibiotic Susceptibility of Bacterial Biofilms in a Microfluidic Device," Lab Chip, 10(23), 3296-9(2010). 

  12. Cira, N. J., Ho, J. Y., Dueck, M. E. and Weibel, D. B., "A Selfloading Microfluidic Device for Determining the Minimum Inhibitory Concentration of Antibiotics," Lab Chip, 12(6), 1052-1059(2012). 

  13. Kaigala, G. V., Hoang, V. N., Stickel, A., Lauzon, J., Manage, D., Pilarski, L. M. and Backhouse, C. J., "An Inexpensive and Portable Microchip-Based Platform for Integrated RT-PCR and Capillary Electrophoresis," Analyst, 133(3), 331-338(2008). 

  14. Jeong, H. H., Lee, S. H. and Lee, C. S., "Pump-less Static Microfluidic Device for Analysis of Chemotaxis of Pseudomonas Aeruginosa Using Wetting and Capillary Action," Biosens. Bioelectron., 47, 278-84(2013). 

  15. Jung, J. H., Choi, C. H., Hwang, T. S. and Lee, C. S., "Efficient In situ Production of Monodisperse Polyurethane Microbeads in Microfluidic Device using Increase of Residence Time of Droplets," Biochip J., 3(1), 44-49(2009). 

  16. Garstecki, P., Fuerstman, M. J., Stone, H. A. and Whitesides, G. M., "Formation of Droplets and Bubbles in a Microfluidic Tjunction - scaling and Mechanism of Break-up," Lab Chip, 6(3), 437-446(2006). 

  17. Song, H. and Ismagilov, R. F., "Millisecond Kinetics on a Microfluidic Chip Using Nanoliters of Reagents," J. Am. Chem. Soc., 125(47), 14613-14619(2003). 

  18. Clausell-Tormos, J., Lieber, D., Baret, J. C., El-Harrak, A., Miller, O. J., Frenz, L., Blouwolff, J., Humphry, K. J., Koster, S., Duan, H., Holtze, C., Weitz, D. A., Griffiths, A. D. and Merten, C. A., "Droplet-based Microfluidic Platforms for the Encapsulation and Screening of Mammalian Cells and Multicellular Organisms (vol 15, pg 427, 2008)," Chem. Biol., 15(8), 875-875 (2008). 

  19. Jung, S. Y., Liu, Y. and Collier, C. P., "Fast Mixing and Reaction Initiation Control of Single-enzyme Kinetics in Confined Volumes," Langmuir, 24(9), 4439-4442(2008). 

  20. Courtois, F., Olguin, L. F., Whyte, G., Theberge, A. B., Huck, W. T. S., Hollfelder, F. and Abell, C., "Controlling the Retention of Small Molecules in Emulsion Microdroplets for Use in Cell-Based Assays," Anal. Chem., 81(8), 3008-3016(2009). 

  21. Liau, A., Karnik, R., Majumdar, A. and Cate, J. H. D., "Mixing Crowded Biological Solutions in Milliseconds," Anal. Chem., 77(23), 7618-7625(2005). 

  22. Tan, Y. C., Ho, Y. L. and Lee, A. P., "Droplet Coalescence by Geometrically Mediated Flow in Microfluidic Channels," Microfluid. Nanofluid., 3(4), 495-499(2007). 

  23. Huebner, A., Bratton, D., Whyte, G., Yang, M., deMello, A. J., Abell, C. and Hollfelder, F., "Static Microdroplet Arrays: a Microfluidic Device for Droplet Trapping, Incubation and Release for Enzymatic and Cell-based Assays," Lab Chip, 9(5), 692-698(2009). 

  24. Simon, M. G., Lin, R., Fisher, J. S. and Lee, A. P., "A Laplace Pressure Based Microfluidic Trap for Passive Droplet Trapping and Controlled Release," Biomicrofluidics, 6(1), (2012). 

  25. Shim, J. U., Cristobal, G., Link, D. R., Thorsen, T., Jia, Y. W., Piattelli, K. and Fraden, S., "Control and Measurement of the Phase Behavior of Aqueous Solutions Using Microfluidics," J. Am. Chem. Soc., 129(28), 8825-8835(2007). 

  26. Schafle, C., Bechinger, C., Rinn, B., David, C. and Leiderer, P., "Cooperative Evaporation in Ordered Arrays of Volatile Droplets,"Phys. Rev. Lett., 83(25), 5302-5305(1999). 

  27. Yun, J. X., Tu, C. M., Lin, D. Q., Xu, L. H., Guo, Y. T., Shen, S. C., Zhang, S. H., Yao, K. J., Guan, Y. X. and Yao, S. J., "Microchannel Liquid-flow Focusing and Cryo-polymerization Preparation of Supermacroporous Cryogel Beads for Bioseparation," J. Chromatogr. A, 1247, 81-88(2012). 

  28. Lee, W. S., Jambovane, S., Kim, D. and Hong, J. W., "Predictive Model on Micro Droplet Generation Through Mechanical Cutting," Microfluid. Nanofluid., 7(3), 431-438(2009). 

  29. Fair, R. B., "Digital Microfluidics: is a True Lab-on-a-chip Possible?," Microfluid. Nanofluid., 3(3), 245-281(2007). 

  30. Du, W. B., Sun, M., Gu, S. Q., Zhu, Y. and Fang, Q., "Automated Microfluidic Screening Assay Platform Based on Drop Lab," Anal. Chem., 82(23), 9941-9947(2010). 

  31. Zeng, S. J., Li, B. W., Su, X. O., Qin, J. H. and Lin, B. C., "Microvalve-actuated Precise Control of Individual Droplets in Microfluidic Devices," Lab Chip, 9(10), 1340-1343(2009). 

  32. Hong, J., Choi, M., Edel, J. B. and deMello, A. J., "Passive Selfsynchronized Two-droplet Generation," Lab Chip, 10(20), 2702-2709(2010). 

  33. Ahn, B., Lee, K., Lee, H., Panchapakesan, R. and Oh, K. W., "Parallel Synchronization of Two Trains of Droplets Using a Railroad-like Channel Network," Lab Chip, 11(23), 3956-3962(2011). 

  34. Christopher, G. F., Bergstein, J., End, N. B., Poon, M., Nguyen, C. and Anna, S. L., "Coalescence and Splitting of Confined Droplets at Microfluidic Junctions," Lab Chip, 9(8), 1102-1109(2009). 

  35. Choi, J. H., Lee, S. K., Lim, J. M., Yang, S. M. and Yi, G. R., "Designed Pneumatic Valve Actuators for Controlled Droplet Breakup and Generation," Lab Chip, 10(4), 456-461(2010). 

  36. Link, D. R., Anna, S. L., Weitz, D. A. and Stone, H. A., "Geometrically Mediated Breakup of Drops in Microfluidic Devices," Phys. Rev. Lett., 92(5), (2004). 

  37. Churski, K., Korczyk, P. and Garstecki, P., "High-throughput Automated Droplet Microfluidic System for Screening of Reaction Conditions," Lab Chip, 10(7), 816-818(2010). 

  38. Hong, J., Choi, M., deMello, A. J. and Edel, J. B., "Interfacial Tension-Mediated Droplet Fusion in Rectangular Microchannels," Biochip J., 3(3), 203-207(2009). 

  39. Niu, X., Gulati, S., Edel, J. B. and deMello, A. J., "Pillar-induced Droplet Merging in Microfluidic Circuits," Lab Chip, 8(11), 1837-1841(2008). 

  40. Mazutis, L. and Griffiths, A. D., "Selective Droplet Coalescence Using Microfluidic Systems," Lab Chip, 12(10), 1800-1806(2012). 

  41. Tan, W. H. and Takeuchi, S., "A Trap-and-release Integrated Microfluidic System for Dynamic Microarray Applications," Proc. Natl. Acad. Sci. USA, 104(4), 1146-1151(2007). 

  42. Boukellal, H., Selimovic, S., Jia, Y. W., Cristobal, G. and Fraden, S., "Simple, Robust Storage of Drops and Fluids in a Microfluidic Device," Lab Chip, 9(2), 331-338(2009). 

  43. Bai, Y. P., He, X. M., Liu, D. S., Patil, S. N., Bratton, D., Huebner, A., Hollfelder, F., Abell, C. and Huck, W. T. S., "A Double Droplet Trap System for Studying Mass Transport Across a Droplet-droplet Interface," Lab Chip, 10(10), 1281-1285(2010). 

  44. Leung, K., Zahn, H., Leaver, T., Konwar, K. M., Hanson, N. W., Page, A. P., Lo, C. C., Chain, P. S., Hallam, S. J. and Hansen, C. L., "A Programmable Droplet-based Microfluidic Device Applied to Multiparameter Analysis of Single Microbes and Microbial Communities," Proc. Natl. Acad. Sci. USA, 109(20), 7665-7670(2012). 

  45. Cohen, I., Li, H., Hougland, J. L., Mrksich, M. and Nagel, S. R., "Using Selective Withdrawal to Coat Microparticles," Science, 292(5515), 265-267(2001). 

  46. Chabert, M. and Viovy, J. L., "Microfluidic High-throughput Encapsulation and Hydrodynamic Self-sorting of Single Cells," Proc. Natl. Acad. Sci. USA, 105(9), 3191-3196(2008). 

  47. Yiantsios, S. G. and Davis, R. H., "On the Buoyancy-Driven Motion of a Drop Towards a Rigid Surface or a Deformable Interface," J. Fluid. Mech., 217, 547-573(1990). 

  48. Cubaud, T. and Mason, T. G., "Folding of Viscous Threads in Diverging Microchannels," Phys. Rev. Lett., 96(11), (2006). 

  49. Agresti, J. J., Antipov, E., Abate, A. R., Ahn, K., Rowat, A. C., Baret, J. C., Marquez, M., Klibanov, A. M., Griffiths, A. D. and Weitz, D. A., "Ultrahigh-throughput Screening in Drop-based Microfluidics for Directed Evolution (vol 170, pg 4004, 2010)," Proc. Natl. Acad. Sci. USA, 107(14), 6550-6550(2010). 

  50. Wang, W., Yang, C., Liu, Y. S. and Li, C. M., "On-demand Droplet Release for Droplet-based Microfluidic System," Lab Chip, 10(5), 559-562(2010). 

  51. Hatakeyama, T., Chen, D. L. and Ismagilov, R. F., "Microgramscale Testing of Reaction Conditions in Solution Using Nanoliter Plugs in Microfluidics with Detection by MALDI-MS," J. Am. Chem. Soc., 128(8), 2518-2519(2006). 

  52. Theberge, A. B., Whyte, G., Frenzel, M., Fidalgo, L. M., Wootton, R. C. R. and Huck, W. T. S., "Suzuki-Miyaura Coupling Reactions in Aqueous Microdroplets with Catalytically Active Fluorous Interfaces," Chem Commun., 41, 6225-6227(2009). 

  53. Miyaura, N. and Suzuki, A., "Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds," Chem. Rev., 95(7), 2457-2483(1995). 

  54. Li, S. H., Lin, Y. J., Cao, J. G. and Zhang, S. B., "Guanidine/Pd(OAc)(2)-catalyzed Room Temperature Suzuki Cross-coupling Reaction in Aqueous Media Under Aerobic Conditions," J. Org. Chem., 72(11), 4067-4072(2007). 

  55. Prasad, N., Perumal, J., Choi, C. H., Lee, C. S. and Kim, D. P., "Generation of Monodisperse Inorganic-Organic Janus Microspheres in a Microfluidic Device," Adv. Funct. Mater., 19(10), 1656-1662(2009). 

  56. Chan, E. M., Alivisatos, A. P. and Mathies, R. A., "High-temperature Microfluidic Synthesis of CdSe Nanocrystals in Nanoliter Droplets," J. Am. Chem. Soc., 127(40), 13854-13861(2005). 

  57. Jung, J. H., Park, T. J., Lee, S. Y. and Seo, T. S., "Homogeneous Biogenic Paramagnetic Nanoparticle Synthesis Based on a Microfluidic Droplet Generator," Angew. Chem. Int. Edit., 51(23), 5634-5637(2012). 

  58. Abou Hassan, A., Sandre, O., Cabuil, V. and Tabeling, P., "Synthesis of Iron Oxide Nanoparticles in a Microfluidic Device: Preliminary Results in a Coaxial Flow Millichannel," Chem Commun., 15, 1783-1785(2008). 

  59. Zhao, C. X., He, L. Z., Qiao, S. Z. and Middelberg, A. P. J., "Nanoparticle Synthesis in Microreactors," Chem Eng Sci., 66(7), 1463-1479(2011). 

  60. Lu, A. H., Salabas, E. L. and Schuth, F., "Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application," Angew. Chem. Int. Edit., 46(8), 1222-1244(2007). 

  61. Jeong, H. H., Kim, Y. G., Jang, S. C., Yi, H. M. and Lee, C. S., "Profiling Surface Glycans on Live Cells and Tissues Using Quantum Dot-lectin Nanoconjugates," Lab Chip, 12(18), 3290-3295(2012). 

  62. Kim, J., Chung, Y. M., Kang, S. M., Choi, C. H., Kim, B. Y., Kwon, Y. T., Kim, T. J., Oh, S. H. and Lee, C. S., "Palladium Nanocatalysts Immobilized on Functionalized Resin for the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen," ACS Catal., 2(6), 1042-1048(2012). 

  63. Bharde, A., Rautaray, D., Bansal, V., Ahmad, A., Sarkar, I., Yusuf, S. M., Sanyal, M. and Sastry, M., "Extracellular Biosynthesis of Magnetite Using Fungi," Small, 2(1), 135-141(2006). 

  64. Duraiswamy, S. and Khan, S. A., "Plasmonic Nanoshell Synthesis in Microfluidic Composite Foams," Nano Lett, 10(9), 3757-3763(2010). 

  65. Rubin, A. E., Tummala, S., Both, D. A., Wang, C. C. and Delaney, E. J., "Emerging Technologies Supporting Chemical Process R&D and Their Increasing Impact on Productivity in the Pharmaceutical Industry," Chem. Rev., 106(7), 2794-2810(2006). 

  66. An, H. Y. and Cook, P. D., "Methodologies for Generating Solution-phase Combinatorial Libraries," Chem. Rev., 100(9), 3311-3340(2000). 

  67. Theberge, A. B., Mayot, E., El Harrak, A., Kleinschmidt, F., Huck, W. T. S. and Griffiths, A. D., "Microfluidic Platform for Combinatorial Synthesis in Picolitre Droplets," Lab Chip, 12(7), 1320-1326(2012). 

  68. Zhang, C. S., Xing, D. and Li, Y. Y., "Micropumps, Microvalves, and Micromixers Within PCR Microfluidic Chips: Advances and Trends," Biotechnol Adv, 25(5), 483-514(2007). 

  69. Hindson, B. J., Ness, K. D., Masquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., Bright, I. J., Lucero, M. Y., Hiddessen, A. L., Legler, T. C., Kitano, T. K., Hodel, M. R., Petersen, J. F., Wyatt, P. W., Steenblock, E. R., Shah, P. H., Bousse, L. J., Troup, C. B., Mellen, J. C., Wittmann, D. K., Erndt, N. G., Cauley, T. H., Koehler, R. T., So, A. P., Dube, S., Rose, K. A., Montesclaros, L., Wang, S. L., Stumbo, D. P., Hodges, S. P., Romine, S., Milanovich, F. P., White, H. E., Regan, J. F., Karlin-Neumann, G. A., Hindson, C. M., Saxonov, S. and Colston, B. W., "High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number," Anal. Chem., 83(22), 8604-8610(2011). 

  70. Kiss, M. M., Ortoleva-Donnelly, L., Beer, N. R., Warner, J., Bailey, C. G., Colston, B. W., Rothberg, J. M., Link, D. R. and Leamon, J. H., "High-Throughput Quantitative Polymerase Chain Reaction in Picoliter Droplets," Anal. Chem., 80(23), 8975-8981(2008). 

  71. Schaerli, Y., Wootton, R. C., Robinson, T., Stein, V., Dunsby, C., Neil, M. A. A., French, P. M. W., deMello, A. J., Abell, C. and Hollfelder, F., "Continuous-Flow Polymerase Chain Reaction of Single-Copy DNA in Microfluidic Microdroplets," Anal. Chem., 81(1), 302-306(2009). 

  72. Hatch, A. C., Fisher, J. S., Tovar, A. R., Hsieh, A. T., Lin, R., Pentoney, S. L., Yang, D. L. and Lee, A. P., "1-Million Droplet Array with Wide-field Fluorescence Imaging for Digital PCR," Lab Chip., 11(22), 3838-3845(2011). 

  73. Fallah-Araghi, A., Baret, J. C., Ryckelynck, M. and Griffiths, A. D., "A Completely in vitro Ultrahigh-throughput Droplet-based Microfluidic Screening System for Protein Engineering and Directed Evolution," Lab Chip, 12(5), 882-891(2012). 

  74. Tawfik, D. S. and Griffiths, A. D., "Man-made Cell-like Compartments for Molecular Evolution," Nat. Biotechnol., 16(7), 652-656(1998). 

  75. Juul, S., Nielsen, C. J. F., Labouriau, R., Roy, A., Tesauro, C., Jensen, P. W., Harmsen, C., Kristoffersen, E. L., Chiu, Y. L., Frohlich, R., Fiorani, P., Cox-Singh, J., Tordrup, D., Koch, J., Bienvenu, A. L., Desideri, A., Picot, S., Petersen, E., Leong, K. W., Ho, Y. P., Stougaard, M. and Knudsen, B. R., "Droplet Microfluidics Platform for Highly Sensitive and Quantitative Detection of Malaria-Causing Plasmodium Parasites Based on Enzyme Activity Measurement," ACS nano, 6(12), 10676-10683(2012). 

  76. Lee, K. G., Park, T. J., Soo, S. Y., Wang, K. W., Kim, B. H., Park, J. H., Lee, C. S., Kim, D. H. and Lee, S. J., "Synthesis and Utilization of E. coli-Encapsulated PEG-Based Microdroplet Using a Microfluidic Chip for Biological Application," Biotechnol. Bioeng., 107(4), 747-751(2010). 

  77. Joensson, H. N., Samuels, M. L., Brouzes, E. R., Medkova, M., Uhlen, M., Link, D. R. and Andersson-Svahn, H., "Detection and Analysis of Low-Abundance Cell-Surface Biomarkers Using Enzymatic Amplification in Microfluidic Droplets," Angew. Chem. Int. Edit., 48(14), 2518-2521(2009). 

  78. Brouzes, E., Medkova, M., Savenelli, N., Marran, D., Twardowski, M., Hutchison, J. B., Rothberg, J. M., Link, D. R., Perrimon, N. and Samuels, M. L., "Droplet Microfluidic Technology for Single-cell High-throughput Screening," Proc. Natl. Acad. Sci. USA, 106(34), 14195-14200(2009). 

  79. Edd, J. F., Carlo, D. D, Humphry, K. J., Koster, S., Irimia, D., Weitz, D. A. and Toner, M., "Controlled Encapsulation of Singlecells Into Monodisperse Picolitre Drops," Lab Chip, 8(8), 1262-1264(2008). 

  80. Kemna, E. W. M., Schoeman, R. M., Wolbers, F., Vermes, I., Weitz, D. A. and van den Berg, A., "High-yield Cell Ordering and Deterministic Cell-in-droplet Encapsulation Using Dean Flow in a Curved Microchannel," Lab Chip, 12(16), 2881-2887(2012). 

  81. Koster, S., Angile, F. E., Duan, H., Agresti, J. J., Wintner, A., Schmitz, C., Rowat, A. C., Merten, C. A., Pisignano, D., Griffiths, A. D. and Weitz, D. A., "Drop-based Microfluidic Devices for Encapsulation of Single Cells," Lab Chip, 8(7), 1110-1115(2008). 

  82. El Debs, B., Utharala, R., Balyasnikova, I. V., Griffiths, A. D. and Merten, C. A., "Functional Single-cell Hybridoma Screening Using Droplet-based Microfluidics," Proc. Natl. Acad. Sci. USA, 109(29), 11570-11575(2012). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로