$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

파이로프로세싱을 위한 전해환원 공정기술 개발
Electrochemical Reduction Process for Pyroprocessing 원문보기

Korean chemical engineering research = 화학공학, v.52 no.3, 2014년, pp.279 - 288  

최은영 (한국원자력연구원) ,  홍순석 (한국원자력연구원) ,  박우신 (한국원자력연구원) ,  임현숙 (한국원자력연구원) ,  오승철 (한국원자력연구원) ,  원찬연 (한국원자력연구원) ,  차주선 (한국원자력연구원) ,  허진목 (한국원자력연구원)

초록
AI-Helper 아이콘AI-Helper

원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱소듐냉각고속로를 연계한 사용후핵연료의 재활용이다. 용융염 전해공정을 이용하는 파이로프로세싱은 사용후핵연료에 존재하는 장 반감기 고독성 원소와 고방열 핵종을 분리하여 고준위 폐기물을 줄이면서도 고속로의 원료물질을 공급하고, 소듐냉각고속로에서는 이를 이용하여 전력을 생산한 후 다시 그 사용후핵연료를 파이로프로세싱에서 원료물질로 가공하는 개념이다. 파이로프로세싱의 전단부에 해당하는 전해환원 공정은 산화물 형태의 사용후핵연료를 금속으로 전환시켜 후속 공정인 전해정련공정에 금속을 공급하는 역할을 한다. 파이로프로세싱을 위한 전해환원 공정의 상용화를 위해서는 고용량, 고효율의 시스템 개발이 요구되므로 양극과 음극에서 공정 속도의 영향을 미치는 인자를 연구하였다.

Abstract AI-Helper 아이콘AI-Helper

Nuclear energy is expected to meet the growing energy demand while avoiding CO2 emission. However, the problem of accumulating spent fuel from current nuclear power plants which is mainly composed of uranium oxides should be addressed. One of the most practical solutions is to reduce the spent oxide...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 5). 따라서, 본 연구에서는 다공성 및 비다공성 shroud를 사용하여 우라늄산화물의 전해환원을 수행함으로써 다공성 shroud의 사용으로 인해 얼마나 전류밀도가 향상될 수 있는지 실험하였다. Table 6에 사용한 shroud를 정리하였다.
  • 파이로프로세싱의 상용화를 위해서는 고용량, 고효율의 전해환원공정 개발이 이루어져야 하며 이를 위해서는 장치 구조 및 운전 조건의 최적화가 선행되어 이를 통해 scale-up된 장치 운전이 필요하다. 이에 본 총설에서는 한국원자력연구원에서 그 동안 진행되어온 고용량, 고효율의 전해환원공정 주요 연구들을 중심으로 소개하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
원자력발전는 어떤 기능을 했는가? 원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱과 소듐냉각고속로를 연계한 사용후핵연료의 재활용이다.
원자력발전의 큰 문제점은 무엇인가? 원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱과 소듐냉각고속로를 연계한 사용후핵연료의 재활용이다.
원자력발전에 필수적으로 발생하는 사용후핵연료 축적을 해결하기 위한 방법은 무엇인가? 원자력발전은 국가의 안정적인 에너지 공급원 및 저탄소 발생 에너지원으로써 기능을 해왔으나, 원자력발전에 필수적으로 발생하는 사용후핵연료 축적이라는 큰 숙제를 안고 있다. 이를 해결하기 위한 방법 중의 하나가 파이로프로세싱과 소듐냉각고속로를 연계한 사용후핵연료의 재활용이다. 용융염 전해공정을 이용하는 파이로프로세싱은 사용후핵연료에 존재하는 장 반감기 고독성 원소와 고방열 핵종을 분리하여 고준위 폐기물을 줄이면서도 고속로의 원료물질을 공급하고, 소듐냉각고속로에서는 이를 이용하여 전력을 생산한 후 다시 그 사용후핵연료를 파이로프로세싱에서 원료물질로 가공하는 개념이다.
질의응답 정보가 도움이 되었나요?

참고문헌 (46)

  1. IAEA, International Status and Prospects of Nuclear Power, 2008. 

  2. IAEA, Spent Fuel Reprocessing Options, IAEA-TECDOC-1587, 2008. 

  3. Willit, J. L., Miller, W. E. and Battles, J. E., "Electrorefining of Uranium and Plutonium-A Literature Review," J. Nucl. Mater., 195, 229-249(1992). 

  4. Laidler, J. J., Battles, J. E., Miller, W. E. and Ackerman, J. P. and Carls, E. L., "Development of Pyroprocessing Technology," Prog. Nucl. Energy., 31, 131-140(1997). 

  5. Benedict, R. W. and McFarlane, H. F., "EBR-II Spent Fuel Treatment Demonstration Project Status," Radwaste Magazine., 5, 23 (1998). 

  6. Karell, E. J. and Gourishankar, K. V., "Separation of Actinides from LWR Spent Fuel Using Molten Salt Based Electrochemical Process," Nucl. Tech., 136, 342-353(2001). 

  7. Konings, J., Serp. R. J. M., Malmbeck, R., Rebizant, J., Scheppler, C. and Glatz, J.-P., "Electrochemical Behavior of Plutonium ion in LiCl-KCl Eutectic Melts," J. Electroanal. Chem., 561, 143-148 (2004). 

  8. Goff, K. M., Benedict, R. W., Howden, K. L., Teske, G. M. and Johnson, T. A., "Pyrochemical Treatment of Spent Nuclear Fuel," Proc. of Global 2005, Tsukuba, Japan, October 9-13(2005). 

  9. Inoue, T. and Koch, L., "Development of Pyroprocessing and Its Future Direction," Nucl. Eng. Technol., 40, 183-190(2008). 

  10. Simpson, M. F. and Herrmann, S. D., "Modeling the Pyrochemical Reduction of Spent $UO_2$ Fuel in a Pilot-Scale Reactor," Nucl. Technol., 162, 179-183(2008). 

  11. Yoo, J.-H., Seo, C.-S., Kim, E.-H. and Lee, H., "A Conceptual Study of Pyroprocessing for Recovering Actinides," Nucl. Eng. Technol., 40, 581-592(2008). 

  12. Kitawaki, S., Shinozaki, T., Fukushima, M., Usami, T., Yahagi, N. and Kurata, M., "Recovery of U-Pu Alloy from MOX Using Pyroprocess Series," Nucl. Technol., 162, 118-123(2008). 

  13. Koyama, T., Sakamura, Y., Ogata, T. and Kobayashi, H., "Pyroprocess and Metal Fuel Development for Closing Actinide Fuel Cycle with Reduced Waste Burden," Proc. Of Global 2009, Paris, France, September 6-11(2009). 

  14. Murakami, T., Uozumi, K., Sakamura, Y., Iizuka, M., Ohta, H., Ogata, T. and Koyama, T., "Recent Achievements and Remaining Challenges on Pyrochemical Reprocessing in CRIEPI," Proc. Of the First ACSEPT International Workshop Lisbon, Portugal, March 31-April 2(2010). 

  15. Song, K.-C., Lee, H., Hur, J.-M., Kim, J.-G., Ahn, D.-H. and Cho, Y.-Z., "Status of Pyroprocessing Technology Development in Korea," Nucl. Eng. Technol., 42, 131-144(2010). 

  16. Inoue, T., Koyama, T. and Arai, Y., "State of the Art of Pyroprocessing Technology in Japan," Energy Procedia., 7, 405-413(2011). 

  17. Nagarajan, K., Prabhakara Reddy, B., Ghosh, S., Ravisankar, G., Mohandas, K. S., Kamachi Mudali, U., Kutty, K. V. G., Kasi Viswanathan, K. V., Anand Babu, C., Kalyanasundaram, P., Vasudeva Rao, P. R. and Raj, B., "Development of Pyrochemical Reprocessing for Spent Metal Fuels," Energy Procedia., 7, 405-413(2011). 

  18. Goff, K. M., Wass, J. C., Marsden, K. C. and Teske, G. M., "Electrochemical Reprocessing of Used Nuclear Fuel," Nucl. Eng. Technol., 43, 335-342(2011). 

  19. Lee, H., Park, G.-I., Kang, K.-H., Hur, J.-M., Kim, J.-G., Ahn, D.-H., Cho, Y.-Z. and Kim, E. H., "Pyroprocessing Technology Development at KAERI," Nucl. Eng. Technol., 43, 317-328(2011). 

  20. Chen, G. Z., Fray, D. J. and Farthing, T. W., "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride," Nature., 407, 361-364(2000). 

  21. Yasuda, K., Nohira, T., Hagiwara, R. and Ogata, Y. H. "Direct Electrolytic Reduction of Solid $SiO_2$ in Molten $CaCl_2$ for the Production of Solar Grade Silicon," Electrochim. Acta, 53, 106-110(2007). 

  22. Jeong, S. M., Jung, J. Y., Seo, C. S. and Park, S. W., "Characteristics of An Electrochemical Reduction of $Ta_2O_5$ for the Preparation of Metallic Tantalum in a $LiCl-Li_2O$ Molten Salt," J. Alloy Compd., 440, 210-215(2007). 

  23. Wang, S. I., Haarberg, G. M. and Kvalheim, E., "Electrochemical Behavior of Dissolved $Fe_2O_3$ in Molten $CaCl_2-KF$ ," J. Iron Steel Res., 16, 48-51(2008). 

  24. Gibilaro, M., Pivato, J., Cassayre, L., Massot, L., Chamelot, L. P. and Taxil, P., "Direct Electroreduction of Oxides in Molten Fluoride Salts," Electrochim. Acta., 56, 5410-5415(2011). 

  25. Wang, D., Qiu, G., Jin, X., Hu, X. and Chen, G. Z., "Electrochemical Metallization of Solid Terbium Oxide," Angew. Chem. Int. Ed., 45, 2384-2388(2006). 

  26. Yan, X. Y. and Fray, D. J., "Production of Niobium Powder by Direct Electrochemical Reduction of Solid $Nb_2O_5$ in a Eutectic $CaCl_2$ -NaCl Melt," Metall. Mater. Trans. B., 33, 685-693(2002). 

  27. Xu, Q., Deng, L.-Q., Wu, Y. and Ma, T., "A Study of Cathode Improvement for Electro-deoxidation of $Nb_2O_5$ in a Eutectic $CaCl_2$ -NaCl Melt at 1073K," J. Alloy Compd., 396, 288-294(2005). 

  28. Jeong, S. M., Yoo, H. Y., Hur, J.-M. and Seo, C.-S., "Preparation of Metallic Niobium from Niobium Pentoxide by An Indirect Electrochemical Reduction in a LiCl- $Li_2O$ Molten Salt," J. Alloy Compd., 452, 27-31(2008). 

  29. Chen, G. Z., Gordo, E. and Fray, D. J., "Direct Electrolytic Preparation of Chromium Powder," Metall. Mater. Trans. B., 35, 223-233(2004). 

  30. Gordo, E., Chen, G. Z. and Fray, D. J., "Toward Optimisation of Electrolytic Reduction of Solid Chromium Oxide to Chromium Powder in Molten Chloride Salts," Electrochim. Acta., 49, 2195-2208(2004). 

  31. Claux, B., Serp, J. and Fouletier, J., "Electrochemical Reduction of Cerium Oxide Into Metal," Electrochim. Acta., 56, 2771-2780 (2011). 

  32. Abdelkader, A. M., Tripuraneni Kilby, K., Cox, A. and Fray, D. J., "DC Voltammetry of Electro-deoxidation of Solid Oxides," Chem. Rev., 113, 2863-2886(2013). 

  33. Wang, D., Jina, X. and Chen, G. Z., "Solid State Reactions: An Electrochemical Approach in Molten Salts," Annu. Rep. Prog. Chem. Sect. C, 104, 189-234(2008). 

  34. Hur, J.-M., Seo, C. S., Hong, S. S., Kang, D. S. and Park, S. W., "Metallization of $U_3O_8$ Via Catalytic Electrochemical Reduction with $Li_2O$ in LiCl Molten Salt," React. Kinet. Catal. Lett., 80, 217(2003). 

  35. Jeong, S. M., Park, S.-B., Hong, S.-S., Seo, C.-S. and Park, S.-W., "Electrolytic Production of Metallic Uranium from $U_3O_8$ in a 20 kgbatch Scale Reactor," J. Radioanal. Nucl. Chem., 268, 349-356 (2006). 

  36. Park, S. B., Park, B. H., Jeong, S. M., Hur, J. M., Seo, C.-S., Choi, S.-H. and Park, S. W., "Characteristics of An Integrated Cathode Assembly for the Electrolytic Reduction of Uranium Oxide in a LiCl- $Li_2O$ Molten Salt," J. Radioanal. Nucl. Chem., 268, 489-495(2006). 

  37. Hur, J.-M., Kim, T.-J., Choi, I.-K., Do, J. B., Hong, S.-S. and Seo, C.-S., "Chemical Behavior of Fission Products in the Petrochemical Process," Nucl. Technol., 162, 192-198(2008). 

  38. Sakamura, Y., Kurata, M. and Inoue, T., "Electrochemical Reduction of $UO_2$ in Molten $CaCl_2$ or LiCl," J. Electrochem. Soc., 153, D31-D39(2006). 

  39. Sakamura, Y., Omori, T. and Inoue, T., "Application of Electrochemical Reduction to Produce Metal Fuel Material From Actinide Oxides," Nucl. Technol., 162, 169-178(2008). 

  40. Herrmann, S. D., Li, S. X., Simpson, M. F. and Phongikarroon, S., "Electrolytic Reduction of Spent Nuclear Oxide Fuel as Part of an Integral Process to Separate and Recover Actinides from Fission Product," Sep. Sci. Technol., 41, 1965-1983(2006). 

  41. Herrmann, S. D., Li, S. X. and Simpson, M. F., "Electrolytic Reduction of Spent Light Water Reactor Fuel: Bench-scale Experiment Results," J. Nucl. Sci. Technol., 44, 361-367(2007). 

  42. Herrmann, S. D. and Li, S. X., "Separation and Recovery of Uranium Metal From Spent Light Water Reactor Fuel Via Electrolytic Reduction and Electrorefining," Nucl. Tech., 171, 247-265(2010). 

  43. Choi, E.-Y., Lee, J. W., Park, J. J., Hur, J.-M., Kim, J.-K., Jung, K. Y. and Jeong, S. M., "Electrochemical Reduction Behavior of a Highly Porous SIMFUEL Particle in a LiCl Molten Salt," Chem. Eng. J., 207-208, 514-520(2012). 

  44. Choi, E.-Y., Kim, J.-K., Im, H.-S., Choi, I.-K., Na, S.-H., Lee, J. W., Jeong, S. M. and Hur, J.-M., "Effect of the $UO_2$ form on the Electrochemical Reduction Rate in a LiCl- $Li_2O$ Molten Salt," J. Nucl. Mater., 437, 178-187(2013). 

  45. Choi, E.-Y., Won, C. Y., Cha, J.-S., Park, W., Im, H.-S., Hong, S. S. and Hur, J.-M., "Electrochemical Reduction of $UO_2$ in LiCl- $Li_2O$ Molten Salt Using Porous and Nonporous Anode Shrouds," J. Nucl. Mater., 444, 261-269(2014). 

  46. Choi, E.-Y., Hur, J.-M., Choi, I.-K., Kwon, S. G., Kang, D.-S., Hong, S. S., Shin, H.-S., Yoo, M. A. and Jeong, S. M., "Electrochemical Reduciton of Porous 17 kg Uranium Oxide Pellets by Selection of an Optimal Cathode/anode Surface Area Ratio," J. Nucl. Mater., 418, 87-92(2011). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로