$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

60MPa급 고강도 콘크리트의 굵은골재 종류와 고온상태에 따른 변형특성 평가
Evaluation on Strain Properties of 60 MPa Class High Strength Concrete according to the Coarse Aggregate Type and Elevated Temperature Condition 원문보기

콘크리트학회논문집 = Journal of the Korea Concrete Institute, v.26 no.3, 2014년, pp.247 - 254  

윤민호 (충남대학교 건축공학과) ,  최경철 (충남대학교 건축공학과) ,  이태규 (대우조선해양건설 건축기술팀) ,  김규용 (충남대학교 건축공학과)

초록
AI-Helper 아이콘AI-Helper

화재시 콘크리트 구조물은 구성재료의 상이한 열적특성으로 인해 강도가 저하하고 동시에 수직부재는 수평부재의 팽창에 의한 모멘트하중을 받아 전단파괴가 발생한다. 따라서 여러가지 화재곡선을 사용한 콘크리트 구조물의 화재시 거동에 대한 연구가 많이 이루어졌지만 주로 온도상승구간에서 발생하는 폭렬특성과 열팽창변형에 관한 연구가 대부분이다. 하지만 고온이 유지될 경우 발생할 수 있는 크리프변형은 화재시 구조물의 안정성에 큰 영향을 미치지만 상대적으로 연구가 미진한 상태이다. 또한 이러한 고온을 받는 콘크리트의 안정성에는 체적의 대부분을 차지하는 굵은골재의 열적특성이 큰 영향을 미치기 때문에 이 연구에서는 화강암계, clay계, clay-ash계 세 종류의 굵은골재를 사용한 콘크리트의 고온 역학적 특성을 평가했다. 그 결과 굵은골재의 성인으로 인한 내부공극 때문에 경량골재를 사용한 콘크리트가 일반골재를 사용한 콘크리트보다 높은 고온강도 및 탄성계수를 나타냈고 열팽창변형과 전체변형의 경우 더 낮은 변형률을 나타내어 온도상승구간에서의 구조적 안정성 측면에서 유리한 것으로 판단되었다. 그러나 고온크리프의 경우 내부공극으로 인해 더 큰 수축량이 발생하기 때문에 내화성능설계시에 이에 대한 추가적인 고려가 필요할 것으로 판단되었다.

Abstract AI-Helper 아이콘AI-Helper

Strain properties of concrete member which acts as an important factor in the stability of the concrete structure in the event of fire, significantly affected the characteristics of the coarse aggregate, which accounts for most of the volume. For this reason, there are many studies on concrete using...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 이 연구에서는 화강암계 일반골재와 일반적으로 많이 사용되는 경량골재인 Clay계, 이를 개선한 Clay-ash계 세 종류의 굵은골재를 사용한 콘크리트의 화재의 상태에 따른 고온 역학적 특성을 평가하여 고강도 콘크리트를 사용한 구조물의 내화성능설계에 활용될 수 있도록 하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
화재시 콘크리트 구조물에 어떠한 변화가 일어나는가? 화재시 콘크리트 구조물은 구성재료의 상이한 열적특성으로 인해 강도가 저하하고 동시에 수직부재는 수평부재의 팽창에 의한 모멘트하중을 받아 전단파괴가 발생한다. 따라서 여러가지 화재곡선을 사용한 콘크리트 구조물의 화재시 거동에 대한 연구가 많이 이루어졌지만 주로 온도상승구간에서 발생하는 폭렬특성과 열팽창변형에 관한 연구가 대부분이다.
콘크리트의 사용재료의 열팽창계수 차이가 있으면 어떠한 문제점을 야기하게 되는가? 콘크리트의 구성재료 중 시멘트 페이스트는 가열을 받아 온도가 증가할수록 수축을 하지만 굵은골재는 팽창하는 경향을 보인다. 이러한 사용재료의 열팽창계수 차이에 의해 콘크리트는 내부에 균열이 발생하여 강도가 저하하게 되고 기둥과 같은 수직부재의 경우에는 강도가 저하된 상태에서 보와 슬래브 등의 수평부재의 팽창에 의해 큰 모멘트하중을 받아 전단파괴가 발생할 수 있다.1) 이러한 전단 파괴로 인해 구조물이 붕괴된 사례는 우리나라와 미국, 일본 등의 화재 사례에서도 여러 차례 보고되고 있다.
본 연구에서 평가한 화강암계, clay계, clay-ash계 세 종류의 굵은골재를 사용한 콘크리트의 고온 역학적 특성은 어떠한가? 또한 이러한 고온을 받는 콘크리트의 안정성에는 체적의 대부분을 차지하는 굵은골재의 열적특성이 큰 영향을 미치기 때문에 이 연구에서는 화강암계, clay계, clay-ash계 세 종류의 굵은골재를 사용한 콘크리트의 고온 역학적 특성을 평가했다. 그 결과 굵은골재의 성인으로 인한 내부공극 때문에 경량골재를 사용한 콘크리트가 일반골재를 사용한 콘크리트보다 높은 고온강도 및 탄성계수를 나타냈고 열팽창변형과 전체변형의 경우 더 낮은 변형률을 나타내어 온도상승구간에서의 구조적 안정성 측면에서 유리한 것으로 판단되었다. 그러나 고온크리프의 경우 내부공극으로 인해 더 큰 수축량이 발생하기 때문에 내화성능설계시에 이에 대한 추가적인 고려가 필요할 것으로 판단되었다.
질의응답 정보가 도움이 되었나요?

참고문헌 (16)

  1. Culver, C. G. and Crist, R. A., "Fire Performance of Military Record Center," ACI Journal, 1975. 

  2. Oh, C. H., "A Study on Damage and Repair of Concrete Buildings after a Fire," Doctoral Dissertation of Tokyo Institute of Technology, 1985, pp. 3-22. 

  3. Kim, G. Y., Kim, Y. S., Choe, G. C., Park, H. G., and Lee, T. G., "Evaluation on Mechanical Properties of High Strength Light-Weight Concrete with Elevated Temperature and loading," Journal of the Korea Concrete Institute, Vol. 23, No. 6, 2011, pp. 723-730. 

  4. Neville, A. M., Properties of Concrete, 4th ed. Longman, 1995, pp. 108-475. 

  5. Kong, F. K., Evans, R. H., Cohen, E., and Roll, F., Handbook of Structural Concrete, Pitman Books Limited, 1983, pp. 215-578. 

  6. Abeles, P. W. and Bardhan-Roy, B. K., Prestressed Concrete Designer's Handbook, In: Cement and Concrete Association, Wexham Springs, A Viewpoint Publication, 1981, pp. 20-41. 

  7. Turker, P., Erdogdu, K., and Erdogan, B., "Investigation of the Various Type of Aggregate Mortar Exposed to Fire," Journal of Cement Concrete World, 2001, Vol. 6, Issue 31, pp. 52-69. 

  8. Lim, J. H., "The Experimental Study of High-Strength Lightweight Concrete for the Enhancement of its Compressive Strength," Master's Thesis of Kyonggi University, 2010, pp. 4-13. 

  9. Wu, B., Lam, S. S., Liu, Q., Chung, Y. M., and Ho, L. F. Y., "Creep Behavior of High-Strength Concrete with Polypropylene Fibers at Elevated Temperatures," ACI Materials Journal, Vol. 107, No. 2, 2010, pp. 176-184. 

  10. RILEM TC 129-MHT, "Test Methods for Mechanical Properties of Concrete at High Temperatures: Part 8 Steady-State Creep and Creep Recovery for Service and Accident Conditions," Materials and Structures, Vol. 33, 2000, pp. 6-13. 

  11. Harada, T., Takeda, J., Yamane, S., and Furumura, F., Strength, Elasticity and Thermal Properties of Concrete Subjected to Elevated Temperatures, ACI American Concrete Institute, Special Publication, 1972, SP-34, pp. 377-406. 

  12. Hammer, T. A., "High-Strength Concrete Phase 3, Compressive Strength and E-Modulus at Elevated Temperatures, Fire Resistance," Report 6.1, SINTEF Structures and Concrete, STF 70 A95023, 1995, pp. 18-57. 

  13. Sullivan, P. J. E., et. al., "Performance of Concrete at Elevated Temperatures (as Measured by the Reduction in Compressive Strength)," Fire Technology, Vol. 28, No. 3, 1992, pp. 351-359. 

  14. Hertz, K. D., "Concrete Strength for Fire Safety Design," Magazine of Concrete Research, Vol. 57, No. 8, 2005, pp. 445-453. 

  15. Andic-Cakir, O. and Hizal, S., "Influence of Elevated Temperatures on the Mechanical Properties and Microstructure of Self Consolidating Lightweight Aggregate Concrete," Construction and Building Materials, Vol. 34, 2012, pp. 575-583. 

  16. Yeo, I. W. and John, Y. W., "A Study on the Behaviors of Granites Subjected to Thermal Stress," Journal of the Korean Institute of Mineral and Energy Resources Engineers, Vol. 29, No. 5, 1992, pp. 263-275. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로