$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

3차원 입체영상 센싱, 이미징 및 디스플레이를 위한 집적영상 및 디지털 홀로그래피 기술
Integral Imaging and Digital Holography Techniques for Three-dimensional Sensing, Imaging and Display (Invited Paper) 원문보기

한국광학회지 = Korean journal of optics and photonics, v.25 no.4, 2014년, pp.169 - 192  

김승철 (광운대학교 전자공학과, 홀로디지로그 휴먼미디어 연구센터, 차세대 3D 디스플레이 연구센터) ,  신동학 (동서대학교 엠비언트 인텔리전스 연구소) ,  김은수 (광운대학교 전자공학과, 홀로디지로그 휴먼미디어 연구센터, 차세대 3D 디스플레이 연구센터)

초록
AI-Helper 아이콘AI-Helper

본 논문에서는 기존 스테레오 3D 방식의 문제를 해결할 수 있는 집적영상 및 디지털 홀로그래피 방식을 포함하는 공간영상방식의 3차원 영상기술에 대해 소개하고 최근의 국내외 연구개발 동향에 대해 알아본다. 또한 이를 기반으로 향후 연구개발 방향을 전망한다.

Abstract AI-Helper 아이콘AI-Helper

In this paper, state-of-the-art digital holography and integral imaging have been introduced as practical three-dimensional imaging and display technology. Operational principles and recent research and development activities of these technologies have been discussed, as well as a vision of their fu...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
집적영상 기술의 두 가지 방식은? 집적영상 기술은 렌즈 어레이와 디스플레이 장치 사이의 거리(g)에 따라서 크게 두 가지 종류의 방식으로 구분할 수 있다. 첫 번째 방식은 거리 g가 렌즈 어레이의 기초렌즈의 초점거리 (f)와 동일한 경우이고 두 번째 방식은 g가 f와 다른 경우로 나눌 수 있다.
양안시차방식에 기반한 3차원 디스플레이 기술의 단점은? 현재 사용하고 있는 양안시차(stereo disparity)방식에 기반한 3차원(three-dimensional: 3D) 디스플레이 기술은 Real 3D를 보여주기에는 여러가지 기술적 한계가 있고, 결과적으로 실제 사용할 경우 눈의 피로 및 어지러움을 동반하고 있다. 따라서 실질적인 Real 3D 영상의 구현을 위해서는 인간의 시각과 거의 흡사한 구조와 원리를 적용한 새로운 형태의 Real 3D 영상 센싱, 이미징, 디스플레이 알고리즘 및 시스템의 연구개발이 요구된다.
양안시차 기반 스테레오 3D 디스플레이 방식에서 수직 깊이 경사 현상은 왜 발생하는가? - 이는 일상생활에서 먼 물건은 위쪽에 가까운 물건은 아래쪽으로 보이는 경험적 요인으로부터 생긴다고 생각되어 양안시차가 제대로 재현되지 않아 발생.
질의응답 정보가 도움이 되었나요?

참고문헌 (73)

  1. G. Lippmann, "Epreuves reversibles donnant la sensation du relief," J. Phys. (Paris) 7, 821-825 (1908). 

  2. H. E. Ives, "Optical properties of a Lippmann lenticulated sheet," J. Opt. Soc. Amer. 21, 171-176 (1931). 

  3. T. Okoshi, A. Yano, and Y. Fukumori, "Curved triple-mirror screen for projection-type three-dimensional display," Appl. Opt. 10, 482-489 (1971). 

  4. T. Okoshi, "Three-dimensional displays," Proc. IEEE 68, 548-564 (1980). 

  5. J.-H. Park, S. Jung, H. Choi, and B. Lee, "Viewingangle-enhanced integral imaging by elemental image resizing and elemental lens switching," Appl. Opt. 41, 6875-6883 (2002). 

  6. J.-S. Jang and B. Javidi, "Three-dimensional synthetic aperture integral imaging," Opt. Lett. 27, 1144-1146 (2002). 

  7. A. Stern and B. Javidi, "3D computational synthetic aperture integral imaging (COMPSAII)," Opt. Express 11, 2466-2451 (2003). 

  8. A. Stern and B. Javidi, "Three dimensional sensing, visualization, and processing using integral imaging," Proc. IEEE 94, 591-607 (2006). 

  9. J. Arai, M. Okui, T. Yamashita, and F. Okano, "Integral three-dimensional television using a 2000-scanning-line video system," Appl. Opt. 45, 1704-1712 (2006). 

  10. R. Martinez-Cuenca, G. Saavedra, A. Pons, B. Javidi, and M. Martinez-Corral, "Facet braiding: A fundamental problem in integral imaging," Opt. Lett. 32, 1078-1080 (2007). 

  11. J.-S. Jang and B. Javidi, "Improved viewing resolution of three-dimensional integral imaging by use of nonstationary micro-optics," Opt. Lett. 27, 324-326 (2002). 

  12. J.-S. Jang and B. Javidi, "Improvement of viewing angle in integral imaging by use of moving lenslet arrays with low fill factor," Appl. Opt. 42, 1996-2002 (2003). 

  13. D.-C. Hwang, J.-S. Park, S.-C. Kim, D.-H. Shin, and E.-S. Kim, "Magnification of 3D reconstructed images in integral imaging using an intermediate-view reconstruction technique," Appl. Opt. 45, 4631-4637 (2006). 

  14. Y. Piao, M. Zhang, and E.-S. Kim, "Resolution-enhanced magnification of a far three-dimensional object image by using the moving-direct-pixel-mapping method in scalable integral-imaging system," Japan. J. of Appl. Phys. 51, 022502-022508 (2012). 

  15. J.-Y. Jang, D. Shin, and E.-S. Kim, "Optical threedimensional refocusing from elemental images based on a sifting property of the periodic $\delta$ -function array in integral-imaging," Opt. Express 22, 1533-1550 (2014). 

  16. C.-W. Chen, M. Cho, Y.-P. Huang, and B. Javidi, "Improved viewing zones for projection type integral imaging 3D display using adaptive liquid crystal prism array," J. Display Technol. 10, 198-203 (2014). 

  17. D.-H. Shin, S.-H. Lee, and E.-S. Kim, "Optical display of true 3D objects in depth-priority integral imaging using an active sensor," Opt. Commun. 275, 330-334 (2007). 

  18. D.-H. Shin, B. Lee, and E.-S. Kim, "Multidirectional curved integral imaging with large depth by additional use of a large-aperture lens," Appl. Opt. 45, 7375-7381 (2006). 

  19. J.-S. Jang, F. Jin, and B. Javidi, "Three-dimensional integral imaging with large depth of focus by use of real and virtual image fields," Opt. Lett. 28, 1421-1423 (2003). 

  20. J.-S. Jang and B. Javidi, "Large depth-of-focus time-multiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperturesizes," Opt. Lett. 28, 1924-1926 (2003). 

  21. J.-S. Jang, Y.-S. Oh, and B. Javidi, "Spatiotemporally multiplexed integral imaging projector for large-scale highresolution three-dimensional display," Opt. Express 12, 557-563 (2004). 

  22. J.-S. Jang and B. Javidi, "Three-dimensional projection integral imaging using micro-convex-mirror arrays," Opt. Express 12, 1077-1083 (2004). 

  23. A. Castro, Y. Frauel, and B. Javidi, "Integral imaging with large depth of field using an asymmetric phase mask," Opt. Express 15, 10266-10273 (2007). 

  24. R. Martinez-Cuenca, H. Navarro, G. Saavedra, B. Javidi, and M. Martinez-Corral, "Enhanced viewing-angle integral imaging by multiple-axis telecentric relay system," Opt. Express 15, 16255-16260 (2007). 

  25. M. Martinez-Corral, H. Navarro, R. Martinez-Cuenca, G. Saavedra, and B. Javidi, "Full parallax 3-D TV with programmable display parameters," Opt. Phot. News 22 , 50 (2011). 

  26. M. Martinez-Corral, B. Javidi, R. Martinez-Cuenca, and G. Saavedra, "Formation of real, orthoscopic integral images by smart pixel mapping," Opt. Express 13, 9175-9180 (2005). 

  27. A. O. Yontem and L. Onural, "Integral imaging using phase-only LCoS spatial light modulators as Fresnel lenslet arrays," J. Opt. Soc. Am. A 28, 2359-2375 (2011). 

  28. R. Zaharia, A. Aggoun, and M. McCormick, "Adaptive 3D-DCT compression algorithm for continuous parallax 3D integral imaging," Signal Processing: Image Communication 17, 231-242 (2002). 

  29. D.-Q. Pham, N. Kim, K.-C. Kwon, J.-H. Jung, K. Hong, B. Lee, and J.-H. Park, "Depth enhancement of integral imaging by using polymer-dispersed liquid-crystal films and dual-depth configuration," Opt. Lett. 35, 3135-3137 (2010). 

  30. S.-W. Cho, J.-H. Park, Y. Kim, H. Choi, J. Kim, and B. Lee, "Convertible two-dimensional-three-dimensional display using an LED array based on modified integral imaging," Opt. Lett. 31, 2852-2854 (2006). 

  31. J. Hahn, Y. Kim, and B. Lee, "Uniform angular resolution integral imaging display with boundary folding mirrors," Appl. Opt. 48, 504-511 (2009). 

  32. J. Kim, J.-H. Jung, C. Jang, and B. Lee, "Real-time capturing and 3D visualization method based on integral imaging," Opt. Express 21, 18742-18753 (2013). 

  33. J.-H. Jung, S.-g. Park, Y. Kim, and B. Lee, "Integral imaging using a color filter pinhole array on a display panel," Opt. Express 20, 18744-18756 (2012). 

  34. G. Baasantseren, J.-H. Park, K.-C. Kwon, and N. Kim, "Viewing angle enhanced integral imaging display using two elemental image masks," Opt. Express 17, 14405-14417 (2009). 

  35. J. Yeom, K. Hong, S.-g. Park, J. Hong, S.-W. Min, and B. Lee, "Bi-sided integral imaging with 2D/3D convertibility using scattering polarizer," Opt. Express 21, 31189-31200 (2013). 

  36. S.-W. Min, M. Hahn, J. Kim, and B. Lee, "Three-dimensional electro-floating display system using an integral imaging method," Opt. Express 13, 4358-4369 (2005). 

  37. J.-Y. Jang, H.-S. Lee, S. Cha, and S.-H. Shin, "Viewing angle enhanced integral imaging display by using a high refractive index medium," Appl. Opt. 50, B71-B76 (2011). 

  38. S.-P. Hong, Y.-S. Oh, and E.-S. Kim, "Practical implementation of a depth feeling-enhanced two-plane electro-floating display system using three-dimensional integral images," J. Soc. Info. Display 17, 423-431 (2009). 

  39. D.-H. Shin, B. Lee, and E.-S. Kim, "Improved viewing quality of 3-D images in computational integral imaging reconstruction based on lenslet array model," ETRI J. 28, 521-524 (2006). 

  40. T. Saishu, K. Taira, R. Fukushima, and Y. Hirayama, "Distortion control in a one-dimensional integral imaging autostereoscopic display system with parallel optical beam groups," SID Symposium Digest of Technical Papers 35, 1438-1441 (2004). 

  41. F. Okano, J. Arai, K. Mitani, and M. Okui, "Real-time integral imaging based on extremely high resolution video system," Proc. IEEE 94, 490-501 (2006). 

  42. J. Arai, F. Okano, M. Kawakita, M. Okui, Y. Haino, M. Yoshimura, M. Furuya, and M. Sato, "Integral threedimensional television using a 33-megapixel imaging system," J. Display Technol. 6, 422-430 (2010). 

  43. Y. Maeda, D. Miyazaki, T. Mukai, and S. Maekawa, "Volumetric display using rotating prism sheets arranged in a symmetrical configuration," Opt. Express 21, 27074-27086 (2013). 

  44. L. Hongen, K. Nomura, and T. Dohi, "Long visualization depth autostereoscopic display using light field rendering based integral videography," in Proc. Virtual Reality Conference (25-29 March, 2006), p. 314. 

  45. T. Koike, M. Kobayashi, and M. Oikawa, "Integral videography display with field sequential LCD," Proc. Stereoscopic Displays and Applications XIX, 680319 (2008). 

  46. S. Sawada and H. Kakeya, "Coarse integral volumetric imaging with flat screen and wide viewing angle," Proc. SPIE 7863, 78631L (2011). 

  47. K. Yanaka and H. Motegi, "Input system for moving integral imaging using full HD camcoder and fly's eye lens," in Proc. 3DTV Conference: The True Vision - Capture, Transmission and Display of 3D Video (4-6 May, 2009), pp. 1-4. 

  48. D. Li, X. Zhao, Y. Yang, Z. Fang, and X. Yuan, "Tunable viewing scope of three-dimensional integral imaging," Appl. Opt. 50, H230-H236 (2011). 

  49. S. Li, H. Li, Z. Zheng, Y. Peng, S. Wang, and X. Liu, "Full-parallax three-dimensional display using new directional diffuser," Chin. Opt. Lett. 9, 081202-081202 (2011). 

  50. H.-J. Kang, N. Kim, H.-H. Song, S.-K. Kim, T. Kim, W.-S. Choi, M.-S. Yoon, S.-C. Kim, S.-H. Lee, E.-S. Kim, H.-J. Choi, H. Kim, J.-H. Park, S.-W. Min, K.-H. Choi, D.-K. Nam, S.-H. Hong, W.-M. Jung, and K.-H. Seo, "State of the art in digital holography," Inf. Disp. 12, 18-50 (2011). 

  51. D. Gabor, "A new microscopic principle," Nature 161, 777-778 (1948). 

  52. M. Lucente, "Interactive computation of holograms using a look-up table," J. Electron. Imag. 2, 28-34 (1993). 

  53. S.-C. Kim and E.-S. Kim, "Effective generation of digital holograms of 3-D objects using a novel look-up table method," Appl. Opt. 47, D55-D62 (2008). 

  54. S.-C. Kim, J.-H. Yoon, and E.-S. Kim, "Fast generation of 3-D video holograms by combined use of data compression and look-up table techniques," Appl. Opt. 47, 5986-5995 (2008). 

  55. S.-C. Kim and E.-S. Kim, "Fast computation of hologram patterns of a 3-D object using run-length encoding and novel look-up table methods," Appl. Opt. 48, 1030-1041 (2009). 

  56. S.-C. Kim, K.-D. Na, and E.-S. Kim, "Accelerated computation of computer-generated holograms of a 3-D object with N ${\times}$ N-point principle fringe patterns in the novel look-up table method," Opt. Laser Eng. 51, 185-196 (2013). 

  57. S.-C. Kim, X.-B. Dong, M.-W. Kwon, and E.-S. Kim, "Fast generation of video holograms of three-dimensional moving objects using a motion compensation-based novel look-up table," Opt. Express 21, 11568-11584 (2013). 

  58. T. Yatagai, "Stereoscopic approach to 3-D display using computer-generated holograms," Appl. Opt. 15, 2722-2729 (1976). 

  59. H. Kang, F. Yarai, L. Onural, and H. Yoshikawa, "Real-time fringe pattern generation with high quality," in Proc. Advances in Imaging, OSA Technical Digest (Optical Society of America, 2009), paper DTuB7. 

  60. H. Kang, F. Yaras, and L. Onural, "Quality comparison and acceleration for digital hologram generation method based on segmentation," in Proceedings of 3DTV Conference: The True Vision-Capture, Transmission and Display of 3D Video, (IEEE, 2009). 

  61. T. Hamano and H. Yoshikawa, "Image-type CGH by means of e-beam printing," in Practical Holography XII, S. A. Benton, ed., Proc. SPIE 3293, 170-180 (1998). 

  62. T. Yamaguchi, G. Okabe, and H. Yoshikawa, "Real-time image plane full-color and full-parallax holographic video display system," Opt. Eng. 46, 125801 (2007). 

  63. M.-W. Kwon, S.-C. Kim, and E.-S Kim, "GPU-based implementation of one-dimensional novel-look-up-table for real-time computation of Fresnel hologram patterns of three-dimensional objects," Opt. Eng. 53, 035103 (2014). 

  64. T. Shimobaba and T. Ito, "Special-purpose computer for holography HORN-4 with recurrence algorithm," Comput. Phys. Commun. 148, 160-170 (2002). 

  65. T. Ito, T. Yabe, M. Okazaki, and M. Yanagi, "Special purpose computer holography HORN-1 for reconstruction of virtual image in three dimensions," Comput. Phys. Commun. 82, 104-110 (1994). 

  66. T. Ito, H. Eldeib, K. Yoshida, S. Takahashi, T. Yabe, and T. Kunugi, "Special-purpose computer for holography HORN-2," Comp. Phys. Commun. 93, 13-20 (1996). 

  67. P. St-Hilaire, S. A. Benton, M. Lucente, and P. M. Hubel, "Color images with the MIT holographic video display," in Practical Holography VI, S. A. Benton, ed., Proc. SPIE 1667, 73-84 (1992). 

  68. D. Smalley, Q. Smithwick, and V. M. Bove, Jr., "Holographic video display based on guided-wave acousto- optic devices," Proc. SPIE Practical Holography XXI, 6488, 64880L (2007). 

  69. D. E. Smalley, "Holovideo on a stick: Integrated optics for holographic video displays," Ph. D. Thesis (2013). 

  70. http://www.seereal.com 

  71. M. Stanley, M. A. Smith, A. P. Smith, P. J. Watson, S. D. Coomber, C. D. Cameron, C. W. Slinger, and A. D. Wood, "3D electronic holography display system using a 100 megapixel spatial light modulator," Proc. SPIE 5249, 297-308 (2004). 

  72. http://www.tuat.ac.jp/-e-takaki/ 

  73. M. Park, B. G. Chae, H.-E. Kim, J. Hahn, H. Kim, C. H. Park, K. Moon, and J. Kim, "Digital holographic display system with large screen based on viewing window movement for 3D video service," ETRI J. 36, 232-241 (2014). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로