$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

수량 비교 과제의 형식에 따른 아동의 수 민감도 측정치의 구성 타당도 및 예측 타당도 비교
Comparing Construct and Predictive Validities of the Measurement of Children's Approximate Number Acuity Depending on Numerosity Comparison Task Format 원문보기

인지과학 = Korean journal of cognitive science, v.25 no.2, 2014년, pp.159 - 187  

박윤지 (중앙대학교 심리학과) ,  조수현 (중앙대학교 심리학과)

초록
AI-Helper 아이콘AI-Helper

대략적 수 민감도(approximate number sense)란 수량에 대하여 대략적인 비교와 덧셈 등의 기본적인 조작을 할 수 있는 능력을 말한다. 선행 연구들은 수 민감도를 측정하기 위해 두 개의 점 집합의 수량을 비교하는 과제를 사용하였다. 선행 연구들이 보고한 수 민감도 수치에는 상당한 편차가 존재하는데 이는 수량 과제 비교의 형식의 차이에 기인할 가능성이 크다. 본 연구는 아동의 수 민감도 측정에 더 적절한 수량 비교 과제의 형식에 대해 알아보았다. 선행 연구에서 가장 흔히 사용된 수량 비교 과제는 서로 다른 색깔의 두 점 집합이 서로 섞여서 제시되는 혼재형(intermixed) 형식과 두 점 집합이 나란히 제시되는 병렬형(side-by-side) 형식이었다. 혼재형 수량 비교 과제는 각 색깔 집합의 수량을 추정할 때, 억제 조절 능력, 선택적 주의 및 시공간 작업 기억 등이 추가적으로 요구될 수 있다. 수량 변별 외에 추가적인 인지 처리를 요구하는 과제는 수량 비교 수행의 개인차를 정확하게 측정하지 못할 가능성이 크며(구성 타당도의 저하), 수량 변별 능력이 마땅히 예측할 것으로 기대되는 관련 변인과의 상관관계도 저조할 가능성이 있다(예측 타당도의 저하). 본 연구는 초등학교 학생들을 대상으로 수량 비교 과제의 형식에 따른 수 민감도 측정치의 차이를 관찰하고 수학 성취도와의 상관관계를 비교하였다. 연구 결과, 혼재 형식 수량 비교 과제를 통한 수 민감도는 병렬 형식에서보다 현저하게 낮았으며, 선행 연구에서 예측한 수 민감도 발달 추이를 고려할 때 지나치게 과소 추정된 값이었다. 나아가 두 가지 제시 형식에 의해 측정된 수 민감도와 수학 성취도와의 상관관계를 비교하였는데, 혼재 형식 수량 비교 과제를 통해 산출된 수 민감도는 수학 성취도와 상관관계를 보이지 않아 예측타당도 역시 낮다고 판단된다. 결론적으로, 본 연구를 통해 아동을 대상으로 하여 수 민감도 측정 시 혼재형식보다 병렬 형식 수량 비교 과제를 사용하는 것이 구성 타당도와 예측 타당도가 더 높다고 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Approximate number sense(hereafter, ANS) is the ability to compare and operate upon numerosity information. The numerosity comparison task is used to measure ANS. However, there is considerable variance among previous reports of ANS acuity which may be related to different task formats used. Here, w...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
수량 비교 과제의 타당도를 비교한 결과 어떠한 형식이 더 순수하고 타당하게 측정하는 방법인가? 반면, 병렬 형식에 기초한 수량 비교 과제의 수 민감도 측정치는 선행 연구를 고려할 때 그 값의 범위가 적절하였으며 수학 성취도 및 월령과 유의한 상관관계가 있었다. 따라서 본 연구 결과, 아동의 수 민감도를 더 순수하고 타당하게 측정하는 방법은 병렬 형식의 수량 비교 과제라고 결론 내릴 수 있다.
대략적 수 민감도란 무엇인가? 대략적 수 민감도(approximate number sense)란 수량에 대하여 대략적인 비교와 덧셈 등의 기본적인 조작을 할 수 있는 능력을 말한다. 선행 연구들은 수 민감도를 측정하기 위해 두 개의 점 집합의 수량을 비교하는 과제를 사용하였다.
수 민감도는 어떻게 진화해 온 것으로 추정되는가? 인간과 동물은 수 민감도라고 불리는 이 기초적인 인지 능력을 타고 난다[4, 5, 6]. 수 민감도는 수렵이나 채집 시 신속하게 다른 동물의 개체나 먹이의 수량 파악 등에 중요한 역할을 하기 때문에 진화되어 왔을 것으로 추정된다[7]. 수 민감도의 발달은 교육이나 문화에 의존하지 않는 것으로 여겨진다.
질의응답 정보가 도움이 되었나요?

참고문헌 (35)

  1. Dehaene, S. (2011). The number sense: How the mind creates mathematics: OUP USA. 

  2. Dehaene, S. (2001). Precis of the number sense. Mind & Language, 16(1), 16-36. 

  3. Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current opinion in neurobiology, 14(2), 218-224. 

  4. Brannon, E. M., Jordan, K. E., & Jones, S. M. (2010). Behavioral signatures of numerical cognition. Primate Neuroethology. Oxford University Press, USA, 144-159. 

  5. Brannon, E. M., & Terrace, H. S. (1998). Ordering of the numerosities 1 to 9 by monkeys. Science, 282(5389), 746-749. 

  6. Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382-10385. 

  7. Jordan, K., Brannon, E. M., Logothetis, N. K., & Ghazanfar, A. A. (2005). Monkeys match the number of voices they hear to the number of faces they see. Current Biology, 15(11), 1034-1038. 

  8. Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503. 

  9. Xu, F. and Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition 74, B1-B11. 

  10. Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental science, 13(6), 900-906. 

  11. Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the "number sense": The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental psychology, 44(5), 1457. 

  12. Halberda, J., Ly, R., Wilmer, J. B., Naiman, D. Q., & Germine, L. (2012). Number sense across the lifespan as revealed by a massive Internet-based sample. Proceedings of the National Academy of Sciences, 109(28), 11116-11120. 

  13. Goldstein, E. B. (2010). Sensation and perception: Wadsworth Publishing Company. 

  14. Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668. 

  15. Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737-18742. 

  16. Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability?. Learning and Individual Differences, 25, 126-133. 

  17. Halberda, J., Sires, S. F., & Feigenson, L. (2006). Multiple spatially overlapping sets can be enumerated in parallel. Psychological Science, 17(7), 572-576. 

  18. Libertus, M. E., Odic, D., & Halberda, J. (2012). Intuitive sense of number correlates with math scores on college-entrance examination. Acta Psychologica, 141, 373-379. 

  19. Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental science, 14(6), 1292-1300. 

  20. Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229. 

  21. Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19(11), 1845-1853. 

  22. Price, G. R., Palmer, D., Battista, C., & Ansari, D. (2012). Nonsymbolic numerical magnitude comparison: Reliability and validity of different task variants and outcome measures, and their relationship to arithmetic achievement in adults. Acta psychologica, 140(1), 50-57. 

  23. Baddeley, A. D. (1986). Working memory. Oxford, England: Oxford University Press. 

  24. Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., & Inglis, M. (2013). Individual Differences in Inhibitory Control, Not Non-Verbal Number Acuity, Correlate with Mathematics Achievement. PloS one, 8(6), e67374. 

  25. Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low­income homes: contributions of inhibitory control. Developmental science, 16(1), 136-148. 

  26. Cantlon, J. F., Platt, M. L., & Brannon, E. M. (2009). Beyond the number domain. Trends in cognitive sciences, 13(2), 83-91. 

  27. van Dijck, J. P., & Fias, W. (2011). A working memory account for spatial-numerical associations. Cognition, 119(1), 114-119. 

  28. Tosto, M. G., Petrill, S. A., Halberda, J., Trzaskowski, M., Tikhomirova, T. N., Bogdanova, O. Y., ... & Kovas, Y. (2014). Why do we differ in number sense? Evidence from a genetically sensitive investigation. Intelligence, 43, 35-46. 

  29. Ansari, D., Lyons, I. M., van Eimeren, L., & Xu, F. (2007). Linking visual attention and number processing in the brain: The role of the temporo-parietal junction in small and large symbolic and nonsymbolic number comparison. Journal of Cognitive Neuroscience, 19(11), 1845-1853. 

  30. 성태재 (1995). 타당도와 신뢰도. 학지사, 서울. 

  31. DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: effects of feedback and training. Frontiers in Human Neuroscience, 6. 

  32. Hurewitz, F., Gelman, R., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599-19604. 

  33. Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child development, 82(4), 1224-1237. 

  34. Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., et al. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41. 

  35. Leibovich, T., & Henik, A. (2013). Comparing performance in discrete and continuous comparison tasks. The Quarterly Journal of Experimental Psychology, 67(5), 899-917. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로