$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

바이오매스로부터 급속 열분해를 통한 바이오오일의 생산기술 연구동향
Research Trend of Bio-oil Production from Biomass by using Fast Pyrolysis 원문보기

한국유화학회지 = Journal of oil & applied science, v.31 no.3, 2014년, pp.453 - 465  

김재곤 (한국석유관리원 석유기술연구소) ,  박조용 (한국석유관리원 석유기술연구소) ,  임의순 (한국석유관리원 석유기술연구소) ,  하종한 (한국석유관리원 석유기술연구소)

초록
AI-Helper 아이콘AI-Helper

본 논문에서는 바이오매스로부터 급속열분해를 통해 난방용, 발전용 및 수송용 연료로 사용하기 위해 바이오오일을 생산하는 기술개발 현황을 나타내었다. 바이오매스를 작은 규모의 액체연료로 전환하기 위해 가장 효율적인 방법 중 하나는 급속열분해이다. 급속열분해를 통한 바이오오일은 $450^{\circ}C{\sim}600^{\circ}C$ 온도에서 바이오매스가 신속히 열분해 되어 증기 급냉를 위해 외부 산소가 없는 조건에서 생산된다. 이 바이오오일은 최초 건조 바이오매스 기준 최대 75 무게%까지 생산할 수 있지만, 일반적으로 60-75 무게% 수준이 적합하다. 본 연구에서는 바이오매스의 원료특성, 바이오오일 생산원리, 바이오오일의 특성 및 활용분야에 대한 최근의 개발현황을 살펴보았다.

Abstract AI-Helper 아이콘AI-Helper

The paper provides a review on bio-oil production technology from biomass by using fast pyrolysis to use heating fuel, power fuel and transport fuel. One of the most promising methods for a small scale conversion of biomass into liquid fuels is fast pyrolysis. In fast pyrolysis, bio-oil is produced ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문에서는 바이오매스로부터 급속열분해를 통해 난방용, 발전용 및 수송용 연료로 사용하기 위해 바이오오일을 생산하는 기술개발 현황을 나타내었다. 바이오매스의 특성, 바이오오일의 생산 원리, 바이오오일의 특성 및 적용분야 등의 고찰을 통하여 바이오에너지로서 잠재성을 살펴보고자 한다.
  • 본 논문에서는 바이오매스로부터 급속열분해를 통해 난방용, 발전용 및 수송용 연료로 사용하기 위해 바이오오일을 생산하는 기술개발 현황을 나타내었다. 바이오매스의 특성, 바이오오일의 생산 원리, 바이오오일의 특성 및 적용분야 등의 고찰을 통하여 바이오에너지로서 잠재성을 살펴보고자 한다.
  • 본 논문에서는 바이오매스로부터 급속열분해를 통해 얻어지는 바이오오일 생산에 대한 기술개발 동향을 살펴보았다. 바이오에너지에는 다양한 종류가 있지만 부존자원 증감추세를 고려할 때 바이오매스로부터 에너지를 생산 및 보급하는 것이 향후 국가 신재생에너지 보급 목표를 달성하는데 매우 중요하다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
2013년 기준 국내에서 상용화 규모로 생산되는 바이오에너지 종류는? 2013년 기준으로 국내에서 상용화 규모로 생산되는 바이오에너지에는 매립지가스, 흑액, 우드칩, 목재펠릿, 하수슬러지 고형연료, 폐목재, 바이오가스 및 바이오디젤 등이 있다[8]. 이 중에서 매립지가스, 흑액, 우드칩, 목재펠릿, 하수슬러지 고형연료, 폐목재, 바이오가스 등은 전기부문의 공급의무화 제도인 RPS 제도에서 바이오에너지로서 공급인증서(Renewable certificate, REC)로 적용되고 있다.
바이오오일 생산 방식은? 바이오매스의 에너지 전환기술 중, 최근 주목 받는 기술에는 바이오오일 생산 기술이 있다[9-13]. 바이오오일은 바이오매스를 산소가 없는 조건 하에서 500 ℃ 내외의 고온에서 짧은 시간 동안 반응시켜 연료로 전환시키는 급속열분해를 통해 생산되고 있다. 급속열분해를 통한 바이오오 일은 최초 건조 바이오매스 기준 최대 75 무게%까지 생산할 수 있지만, 일반적으로 60-75% 수준이 적합하다.
바이오매스의 에너지 전환기술 중 바이오오일의 장점은? Fig. 1에서 보는 바와 같이 바이오오일은 바이오매스를 급속 열분해(fast pyrolysis)하여 얻는 액체연료로서 고체 원료에 비하여 에너지 밀도가 높아 운반, 저장 비용이 적게 들 뿐만 아니라 액체이므로 취급이 용이하여 난방용, 발전용 연료로서 이용가치가 높다[14-16]. 미국의 바이오매스 프로그램에서는 이러한 바이오오일을 고품질로 개질하여 최종적으로 수송용 연료인 휘발유나 경유 대체 연료로 사용하는 계획을 수립하고 있기도 하다[17].
질의응답 정보가 도움이 되었나요?

참고문헌 (55)

  1. IEA, 2009, "World Energy Outlook", International Energy Agency, OECD/Paris. 

  2. J.-K. Kim, C. H. Jeon, E. S. Yim, C. S. Jung, S. B. Lee, Y. J. Lee and M. J. Kang, A study on fuel quality characteristics of F-T diesel for production of BTL diesel, J. of the Korean Oil Chemists' Soc., 29, 450 (2012). 

  3. S. K. Hoekman, A. Broch, C. Robbins, E. Ceniceros and M. Natarajan, Review of biodiesel composition, properties, and specifications, Renew. Sustain. Energy Rev., 16, 143 (2012). 

  4. J.-K. Kim, C. H. Jeon, E. S. Yim and C. S. Jung, A study on the fuel characteristics of hydrotreated biodiesel (HBD) for alternative diesel fuel, J. of the Korean Oil Chemists' Soc., 28, 508 (2011). 

  5. Hart's Global Biofuel Center, 2010, "Global Biofuels Outlook 2010-2020", Houston, USA. 

  6. J.-K. Kim, E. S. Yim, C-. S. Jung, Study on comparison of global biofuels mandates policy in transport sector, New & Renewable Energy, 7, 18 (2011). 

  7. J.-K. Kim, E. S. Yim, C. H. Jeon, C. S. Jung and B. H. Han, Cold performance of various biodiesel fuel blends at low temperature, International Journal of Automotive Technology, 13, 293 (2012). 

  8. New & Renewable Energy Center. 2013, "New & Renewable Energy Supply data", Korea. 

  9. A. V. Bridgwater. Biomass fast pyrolysis, Thermal Sciences, 8, 21 (2004). 

  10. S. Czernik and A. V. Bridgwater, Overview of applications of biomass fast pyrolysis oil, Energy & Fuels, 18, 590 (2004). 

  11. N. Ozbay, E. Apaydin-Varol, B. B. Uzun and A. E. Putun, Characterization of bio-oil obtained from fruit pulp pyrolysis, Energy, 33, 1233 (2008). 

  12. M. R. Islam, M. S. H. K. Tushar and H. Haniu, Production of liquids fuels and chemicals from pyrolysis of Bangladeshi bicycle/rickshaw tire wastes, Journal of Analytical and Applied Pyrolysis, 82, 96 (2008). 

  13. W. N. R. W. Isanhak, M. W. M. Hisham, M. A. Yarmo and T. Y. Yun Hin, A review on bio-oil production from biomass by using pyrolysis method, Renewable and Sutainable Energy Review, 16, 5910 (2012). 

  14. M. Ikura, M. Stanciulescu and E. Hogan, Emulsification of pyrolysis derived bio-oil in diesel fuel, Biomass Bioenergy, 24, 221 (2003). 

  15. D. Chiaramonti, M. Bonini, E. Fratini, G. Tondi and K. Gartner, Development of emulsions from biomass pyrolysis liquid and diesel and their use in engines-Part 1: Emulsion production, Biomass Bioenergy, 25, 85 (2003). 

  16. J. F. Hernandez, S. N. Guash and J. C. Morla, Effect of pyrolysis production on diesel-fuel oil blends, Technological Quimica, 3, 18 (2006). 

  17. U.S Department of Energy, 2011, Biomass Program Overview. 

  18. C. Helena, 2011, Bioenergy. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation, Cambrige, United Kingdom and New York, NY, USA. 

  19. N. Abdullah and H. Gerhauser, Bio-oil derived from empty fruit bunches, Fuel, 87, 2606 (2008). 

  20. D. S. Scott, J. Piskorz and D. Radlein, Liquid products from the fast pyrolysis of wood and cellulose, Industrial & Engineering Chemistry, 24, 581 (1985). 

  21. D. S. Scott and J. Piskorz, The flash pyrolysis of aspen-poplar wood, Canadian Journal of Chemical Engineering, 60, 666 (1982). 

  22. H. Thunman and F. Johnsson, Composition of volatile gases and thermochemical properties of wood for modeling of fixed or fluidized beds, Energy & Fuels, 15, 1488 (2001). 

  23. W. T. Tsai and Y. M. Chang, Fast pyrolysis of rice husks: product yields and compositions, Bioresource Technology, 98, 22 (2007). 

  24. O. Onay and O. M. Kockar, Fast pyrolysis of rape seed in a well-swept fixed bed reactor, Journal of Analytical and Applied Pyrolysis, 59, 995 (2001). 

  25. O. Onay, S. H. Beis, O. M. Kockar, Pyrolysis of walnut shell in a well-swept fixed bed reactor, Energy Sources, 26, 771 (2004). 

  26. S. H. Beis, O. Onay and O. M. Kockar, Fixed-bed pyrolysis of safflower seed: influence of pyrolysis parameters on product yield and compositions, Renew Energy, 26, 21 (2002). 

  27. B. B. Uzun, A. E. Putun and E. Putun, Fast pyrolysis of soybean cake: product yields and compositions, Bioresource Technology, 97, 569 (2006). 

  28. F. A. Agblevor and A. E. Wiselogel, Fast pyrolysis of stored biomass feedstocks, Energy & Fuels, 9, 635 (1995). 

  29. K. Raveendran and K. C. Khilar, Pyrolysis characteristics of biomass and biomass components, Fuel, 75, 987 (1996). 

  30. S. Senoz, Pyrolysis of pine(PinusBrutiaTen.) Chips:1. Effect of pyrolysis temperature and heating rate on the product yields, Energy Sources, 24, 347 (2002). 

  31. S. Balci and H. Yucel, Pyrolysis kinetics of lignocellulosic materials, Industrial & Engineering Chemistry Research, 32, 2573 (1993). 

  32. P. A. Della Roca, E. G. Cerrella, P. R. Bonelli and A. L. Cukierman, Pyrolysis of hard-woods residues: on kinetics and chars characterization, Biomass and Bioenergy, 16, 79 (1999). 

  33. I. Demiral and E. A. Ayan, Effect of pyrolysis conditions on the product yields and characterization of the liquid product, Bioresource Technology, 102, 3946 (2011). 

  34. J. V. Ortega and M. W. Liberatore, Physical and chemical characteristics of aging pyrolysis oils produced from hardwood and softwood feedstocks, Journal of Analytical and Applied Pyrolysis, 91, 190 (2011). 

  35. J. Cao, X. Xiao, S. Zhang, X. Zhao, K. Sato and Y. Ogawa, Preparation and characterization of bio-oils from internally circulating fluidized-bed pyr-olyses of municipal, livestock, and wood waste, Bioresource Technology, 102, 2009 (2011). 

  36. M. Amutio, G. Lopez, M. Artetxe, G. Elordi, M. Olazar and J. Bilbao, Influence of temperature on biomass pyrolysis in a conical spouted bed reactor, Resources, Conservation and Recycling, 59, 23 (2012). 

  37. S. Thangalazhy-Gopakumar, H. Ravidran, R. B. Gupta, O. Fasina and M. Tu, Physical properties of bio-oil produced at various temperature from pine wood using an auger reactor, Bioresource Technology, 101, 8389 (2011). 

  38. H. S. Heo, Y. K. Park, C. Ryu, D. J. Suh and Y. W. Suh, Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed, Bioresource Technology, 101, 91 (2010). 

  39. H. S. Heo, H. J. Park, S. H. Park, S. Kim, D. J. Suh and Y. W. Suh, Fast pyrolysis of rice husks under different reaction conditions, Industrial & Engineering Chemistry, 16, 27 (2010). 

  40. M. R.Islam, M. Parveen and H. Haniu, Properties of sugarcane waste-derived bio-oils obtained by fixed-bed fire-tube heating pyrolysis, Bioresource Technology, 101, 4162 (2010). 

  41. C. A. Mullen, A. A. Boateng, N. M. Goldberg, I. M. Lima, D. A. Laird and K. B. Hicks, Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis, Biomass and Bioenergy, 34, 67 (2010). 

  42. H. Zhang, R. Xiao, H. Huang and G. Xiao, Comparison of non-catalytic and catalytic fast pyrolysis of corncob in a fluidized bed reactor, Bioresource Technology, 100, 1428 (2009). 

  43. M. Asadullah, M. A. Rahman, M. M. Ali, M. A. Motin, M. B. Sultan and M. R. Alam, Jute stick pyrolysis for bio-oil production in fluidized bed reactor, Bioresource Technology, 99, 44 (2008). 

  44. J. Lede, F. Broust, F-T. Ndiaye and M. Ferrer, Properties of bio-oils produced by biomass fast pyrolysis in a cyclone reactor, Fuel, 86, 1800 (2007). 

  45. D. K. Shen and S. Gu, The mechanism for thermal decomposition of cellulose and its main products, Bioresource Technology, 100, 6496 (2009). 

  46. A. V. Bridgwater and G. V. C. Peacocke, Fast pyrolysis processes for biomass, Renewable & Sustainable Energy Reviews, 4, 1 (2000). 

  47. J. Lehot, A. Oasmaa, Y. Solantausta, M. Kyto and D. Chiaramonti, 2013, "Fuel Oil Quality and Combustion of Fast Pyrolysis Bio-oils", VTT Technology 87, Espoo. 

  48. M. Ringer, V. Putsche and J. Scahill, 2006, "Large-scale Pyrolysis Oil Production: A Technology Assessment and Economic Analysis", NREL Technical Report NREL/TP-510-37779. 

  49. J. Piskorz, D. Radlein and D. S. Scott, On the mechanism of the rapid pyrolysis of cellulose, Journal of Analytical and Applied Pyrolysis, 9, 121 (1986). 

  50. E. J. Soltes and T. J. Elder, "Pyrolysis", I.S, 1981, 63, Goldstein ed. Organic Chemicals from Biomass, Boca Raton, FL: CRC Press. 

  51. P. K. Kanaujia, Y. K. Sharma, M. O. Garg, D. Tripathi and R. Singh, Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass, Journal of Analytical and Applied Pyrolysis, 105, 55 (2014). 

  52. S. B. Jones, J. E. Holladay, C. Valkenburg, D. J. Stevens, C. W. Walton, C. Kinchin, D. C. Elliot and S. Czernik, 2009, "Production of Gasoline and Diesel from Biomass via Fast Pyrolysis, Hydrotreating and Hydrocracking: A design case", PNNL report-18284. 

  53. J. L. Zheng and Q. Wei, Improving the quality of fast pyrolysis bio-oil by reduced pressure distillation, Biomass and Bioenergy, 35, 1804 (2011). 

  54. N. Lohitharn and B. H. Shanks, Upgrading of bio-oil: effect of light aldehydes on acetic acidremoval via esterification, Catalysis Communications, 11, 96 (2009). 

  55. M. Ikura, M. Stanciulescu and E. Hogan, Emulsification of pyrolysis derived bio-oil in diesel fuel, Biomass and Bioenergy, 24, 221 (2003). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로