$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

산화철 나노구조박막 이용한 도금폐수내의 시안제거
Cyanide Degradation from Plating Wastewater Using Iron Oxide Nanocomposite Layer 원문보기

한국물환경학회지 = Journal of Korean Society on Water Environment, v.30 no.3, 2014년, pp.292 - 297  

장준원 (한양대학교 건설환경공학과) ,  김혜란 (한양대학교 건설환경공학과) ,  임형석 (한양대학교 건설환경공학과) ,  박재우 (한양대학교 건설환경공학과)

Abstract AI-Helper 아이콘AI-Helper

We synthesized the self-organized nanoporous oxide with potentiostatic anodization of iron foil. The iron oxide nanocomposite (INCs) were fabricated in 1M $Na_2SO_4$ containing 0.5wt% NaF electrolyte holding the potential at 20, 40 and 60 V for 20min, respectively. Field Emmision Scanning...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 연구에서는 양극산화법을 이용하여 산화철 나노구조박막(iron oxide nanocomposite, INCs)을 제조하고, 이를 유사 펜톤공정에 이용하여 도금폐수 내의 시안 및 시안화합물을 처리하고자 한다. 또한 기존의 상용마그네타이트 파우더를 이용한 펜톤산화 및 과산화수소만을 이용한 고도산화처리 등과 시안제거효율을 비교하고자 한다.
  • 본 실험은 시안이온의 분해에 있어 과산화수소만의 영향을 평가하기 위하여 수행되었다. Fig.
  • 본 연구에서는 양극산화법을 이용하여 산화철 나노구조박막(iron oxide nanocomposite, INCs)을 제조하고, 이를 유사 펜톤공정에 이용하여 도금폐수 내의 시안 및 시안화합물을 처리하고자 한다. 또한 기존의 상용마그네타이트 파우더를 이용한 펜톤산화 및 과산화수소만을 이용한 고도산화처리 등과 시안제거효율을 비교하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
시안의 사용처는 무엇인가? 시안(cyanide)는 도금, 의학, 채광 및 자동차 산업에서 광범위하게 사용되고 있으며, 또한 이들 공정에서 많이 발생되고 있다(Mudliar et al., 2009; Zagury et al.
시안 이온의 특징은 무엇인가? , 2004). 시안 이온(free cyanide)은 자체로 매우 유독할 뿐 아니라 카드뮴(Cd), 구리(Cu), 니켈(Ni) 등의 전이금속(transition metal) 등과 강한 복합체를 형성하며, 이러한 시안화합물은 생물체에 악영향을 주는 것으로 알려져 있다. 따라서 시안이 함유된 폐수의 처리는 도금 공업 등에서 가장 중요한 현안으로 인식되어 왔다(Choi and Park, 1997; Kim et al.
시안화합물 완전분해의 한계르 극복하기 위한 방법은 무엇인가? 시안이온과는 달리 전이금속과 강력한 복합체를 형성하고 있는 시안화합물 등은 위에서 언급한 처리공정으로그 완전분해의 한계를 가지고 있다. 따라서, 이러한 문제점을 극복하기 위한 방법으로는 산화제를 투입한 물리-화학적 공정(Haag and Yao, 1992), 오존(ozone) 산화법(Gurol and Holden, 1988; Zeevalkink et al., 1980), 광촉매(photocatalysis)인 titanium dioxide (TiO2)를 이용한 처리공정(Pedraza-Avella et al., 2008), ferrate (VI) 산화공정(Yngard et al., 2008) 등이 연구되고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (27)

  1. Antony, H., Legrand, L., and Chauss, A. (2008). Carbonate and Sulphate Green Rusts-Mechanisms of Oxidation and Reduction, Electrochimica Acta, 53(24), pp. 7146-7156. 

  2. Beattie, J. and Polyblank, G. A. (1995). Copper-catalysed Oxidation of Cyanide by Peroxide in Alkaline Aqueous Solution, Australian Journal of Chemistry, 48(4), pp. 861-868. 

  3. Chang, Y. Y., Choi, S. I., and Lee, C. H. (2000). Fenton-like Oxidation for the Treatment of Landfill Leachate, Journal of Korean Society on Water Environment, 16(3), pp. 13-420. 

  4. Chang, Y. Y., Chung, D. C., Chung, M. J., and Choi, S. I. (1999). A Characteristics Study for Fenton-like Oxidation in $Fe{\circ}/H_2O_2$ System, Journal of Korean Society on Water Environment, 15(4), pp. 591-599. 

  5. Choi, W. S. and Park, G. H. (1997). Cyanide Removal of Sodium Cyanide and Cyanide Containing Plating Wastewater with Hydrogen Peroxide, Journal of Korea Society of Environmental Administration, 3(1), pp. 35-48. 

  6. Dash, R. R., Gaur, A., and Balomajumder, C. (2009). Cyanide in Industrial Wastewaters and Its Removal: A Review on Biotreatment, Journal of Hazardous Materials, 163(1), pp. 1-11. 

  7. Fernandez, J., Nadtochenko, V., Enea, O., Bozzi, A., Yuranova, T., and Kiwi, J. (2003). Testing and Performance of Immobilized Fenton Photoreactions via Membranes, Mats and Modified Copolymers, International Journal of Photoenergy, 5(2), pp. 107-114. 

  8. Ghicov, A., Tsuchiya, H., Macak, J. M., and Schmuki, P. (2005). Titanium Oxide Nanotubes Prepared in Phosphate Eletroytes, Electrochemisty Communication, 7, pp. 505-509. 

  9. Gurol, M. D. and Holden, T. E. (1988). The Effect of Copper and Iron Complexation on Removal of Cyanide by Ozone, Industrial & Engineering Chemistry Research, 27(7), pp. 1157-1162. 

  10. Haag, W. R. and Yao, C. C. D. (1992). Rate Constants for Reaction of Hydroxyl Radicals with Several Drinking Water Contaminants, Environmental Science & Technology, 26(5), pp. 1005-1013. 

  11. Haber, F. and Weiss, J. (1934). The Catalytic Decomposition of Hydrogen Peroxide by Iron Salts, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 147(861), pp. 332-351. 

  12. Kim, D. H. and Lee, K. H. (1998). Treatment of Organic Acid Cleaning Reagent Using Fenton Oxidation, Journal of Korean Society on Water Environment, 14(1), pp. 13-19. 

  13. Kim, S. I., Roh, S. H., and Nah, J. W. (2000). Plating Wastewater Treatment by Hybrid Process of Fenton's Oxidation and Membrane Separation, Applied Chemistry for Engineering, 11(4), pp. 360-365. 

  14. Kitajima, N., Fukuzumi, S., and Ono, Y. (1978). Formation of Superoxide Ion During the Decomposition of Hydrogen Peroxide on Supported Metal Oxides, The Journal of Physical Chemistry, 82(13), pp. 1505-1510. 

  15. Kong, S. H., Watts, R. J., and Choi, J. H. (1998). Treatment of Petroleum-Contaminated Soils Using Iron Mineral Catalyzed Hydrogen Peroxide, Chemosphere, 37(8), pp. 1473-1482. 

  16. Lim, H. G., Namkung K. C., and Yoon, J. Y. (2005). Theoretical Understanding of Fenton Chemistry, Applied Chemistry for Engineering, 16(1), pp. 9-14. 

  17. Ministry of Environment (2008). Standard Methods for the Examination of Water and Wastewater Quality Control, Ministry of Environment, pp. 196-198. 

  18. Moon, J. W., Moon, H. S., Song, Y. G., Kang, J. K., and Roh, Y. (2003). Investigation of Corrosion Minerals from the Remediation for TCE-Contaminated Groundwater, The Mineralogical Society of Korea, 16(1), pp. 107-123. 

  19. Mudliar, R., Umare, S. S., Ramteke, D. S., and Wate, S. R. (2009). Energy Efficient-Advanced Oxidation Process for Treatment of Cyanide Containing Automobile Industry Wastewater, Journal of Hazardous Materials, 164(2-3), pp. 1474-1479. 

  20. Pedraza-Avella, J. A., Acevedo-Pena, P., and Pedraza-Rosas, J. E. (2008). Photocatalytic Oxidation of Cyanide on $TiO_2$ : An Electrochemical Approach, Catalysis Today, 133-135, pp. 611-618. 

  21. Sarla, M., Pandit, M., Tyagi, D. K., and Kapoor, J. C. (2004). Oxidation of Cyanide in Aqueous Solution by Chemical and Photochemical Process, Journal of Hazardous Materials, 116 (1-2), pp. 49-56. 

  22. Tratnyek, P. G. and Johnson, R. L. (2006). Nanotechnologies for Environmental Cleanup, Nano Today, 1(2), pp. 44-48. 

  23. Watts, R. J., Bottenberg, B. C., Hess, T. F., Jensen, M. D., and Teel, A. L. (1999). Role of Reductants in the Enhanced Desorption and Transformation of Chloroaliphatic Compounds by Modified Fenton's Reactions, Environmental Science & Technology, 33(19), pp. 3432-3437. 

  24. Watts, R. J. and Dilly, S. E. (1996). Evaluation of Iron Catalysts for the Fenton-like Remediation of Diesel-contaminated Soils, Journal of Hazardous Materials, 51(1-3), pp. 209-224. 

  25. Yngard, R. A., Sharma, V. K., Filip, J., and Zboril, R. (2008). Ferrate(VI) Oxidation of Weak-Acid Dissociable Cyanides, Environmental Science & Technology, 42(8), pp. 3005-3010. 

  26. Zagury, G. J., Oudjehani, K., and Deschenes, L. (2004). Characterization and Variability of Cyanide in Solid Mine Tailing from Gold Extraction Plants, The Science of the Total Environment, 320, pp. 211-224. 

  27. Zeevalkink, J. A., Visser, D. C., Arnoldy, P., and Boelhouwer, C. (1980). Mechanism and Kinetics of Cyanide Ozonation in Water, Water Research, 14(10), pp. 1375-1385. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로