$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

To date, biomedical application of three-dimensional (3D) printing technology remains one of the most important research topics and business targets. A wide range of approaches have been attempted using various 3D printing systems with general materials and specific biomaterials. In this review, we ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 1에서는 4가지 분류의 응용 사례를 보여주고 있다. 본 장에서는 3D프린팅 기술의 의료분야 응용에 있어 일반소재 및 생체소재를 활용하는 경우를 나누어 기술활용 사례를 개략적으로 설명하고자 한다.
  • 앞 절에서 소개된 조직공학의 접근 방식은 주로 지지체를 제작한 후에 세포를 적용하는 방식이다. 본 절에서는 3D프린팅 공정 도중 직접 세포를 프린팅하는 연구를 소개하고자 한다. 세포는 외부 오염인자에 대해 철저한 위생환경이 보장되어야 하고 프린팅 공정 중 세포에 가해지는 물리적인 자극이 최소화되어 손상되지 않아야 한다.
  • 이와 관련하여 3D프린팅 바이오 조형 분야에 있어 많은 연구가 이루어지고 있다. 본 특집논문에서는 3D프린팅 기술의 생체의료 분야에서의 일반적인 상용 소재 활용사례를 소개하고, 특히 재생의학 및 조직공학에 특화된 기능성 생체재료를 활용한 3차원지지체 제작 방법의 최신 연구동향에 대해 살펴보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
3D프린팅 기술이란 무엇인가? 최근 미국, 유럽, 일본 등 제조산업 선진국을 중심으로 제조업 혁신을 위한 3D프린팅 기반기술 및 응용기술 연구가 활발히 이루어지고 있다. 3D프린팅 기술은 3차원 스캔이나 3차원 모델링을 통하여 획득된 디지털 데이터를 적층가공 방식으로 제작하는 가공기술이며, 1980년 대에 광조형 기반의 stereolithography(SLA), 열용착 기반의 fused deposition modeling(FDM)이 고안되었다. 이후 현재까지 많은 파생기술이 개발되어 시작품 제작 수준에서의 활용뿐만 아니라 각종 산업현장에서 기능성 부품으로 직접 활용되고 있다.
3D프린팅 기술이 실제 부품으로 활용되기 보다는 제품의 시각화 또는 조립테스트용 시작품으로 더 활용된 이유는 무엇인가? 3D프린팅 기술은 디지털 데이터로부터 금형없이 직접적인 생산이 가능하다는 점에서 주로 시제품 제작분야에 효율적인 활용이 이루어져왔다. 또한 일반 플라스틱 사출 공정 혹은 절삭가공 결과물 대비 표면조도, 기계적 강도·강성 면에서의 한계점으로 인해 실제부품으로 활용되기 보다는 제품의 시각화 또는 조립테스트용 시작품으로의 활용이 더 많이 이루어져 왔다.2 의료기기 개발에도 이러한 시제품 제작 수준의 3D프린팅 기술 활용이 많이 이루어지고 있다.
고분자 생체재료를 이식 가능한 기구로 활용하는 경우 어떻게 분류할 수 있는가? 한편, 고분자 생체재료를 이식 가능한 기구로 활용하는 경우는 체내에서 분해되는 여부에 따라 분해성 고분자와 비분해성 고분자로 분류될 수 있다. 비분해성 고분자와는 달리 분해성 고분자는 체내에서 역할을 마치고 나면 체액의 작용에 의하여 분해되어 잔여물질의 제거를 위한 추가수술이 불필요하다는 장점이 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (35)

  1. Ahn, D. G. and Yang, D. Y., "Principle of Rapid Prototyping and its Trends," J. Korean Soc. Precis. Eng., Vol. 22, No. 10, pp. 7-16, 2005. 

  2. Wohler, T., "Wohlers Report 2013," Wohler's Associates Inc., pp. 23-52, 2013. 

  3. Zein, I., Hutmacher, D. W., Tan, K. C., and Teoh, S. H., "Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications," Biomaterials, Vol. 23, No. 4, pp. 1169-1185, 2002. 

  4. EOS, "Medical Devices," http://www.eos.info/industries_markets/medical/medical_devices (Accessed 12 NOV. 2014) 

  5. 3ders, "Ivan Owen: Life Enhancing 3D printed Prosthetics," http://www.3ders.org/articles/20140125- ivan-owen-life-enhancing-prosthetics-3d-printed-andopen-sourced.html (Accessed 12 NOV. 2014) 

  6. Lee, J. Y., Choi, B., Wu, B., and Lee, M., "Customized Biomimetic Scaffolds Created by Indirect Three-dimensional Printing for Tissue Engineering," Biofabrication, Vol. 5, No. 4, Paper No. 045003, 2013. 

  7. Stratasys, "Medical Case Studies," http://www.stratasys.co.kr/resources/case-studies/medical (Accessed 12 NOV. 2014) 

  8. Turkcadcam, "Rapid Prototyping Helps Separate Conjoined Twins," http://www.turkcadcam.net/rapor/ otoinsa/uyg-medikal-conjoined-twins.html (Accessed 12 NOV. 2014) 

  9. Cnet, "3D-printed 'Magic Arms' Give Little Girl New Reach," http://www.cnet.com/news/3d-printed-magicarms-give-little-girl-new-reach/ (Accessed 12 NOV. 2014) 

  10. Kitson, P. J., Rosnes, M. H., Sans, V., Dragone, V., and Cronin, L., "Configurable 3D-Printed Millifluidic and Microfluidic 'Lab on a Chip' Reactionware Devices," Lab on a Chip, Vol. 12, No. 18, pp. 3199- 3522, 2012. 

  11. Huang, M. C., Ye, H., Kuan, Y. K., Li, M. H., and Ying, J. Y., "Integrated Two-step Gene Synthesis in a Microfluidic Device," Lab on a Chip, Vol. 9, No. 2, pp. 276-285, 2009. 

  12. Yoo, J. J. and Lee, I. W, "Regenerative Medicine," Koonja Publishing Inc., pp. 293-508, 2010. 

  13. EOS, "Orthopaedic Technology," http://www.eos.info/industries_markets/medical/orthopaedic_technology (Accessed 12 NOV. 2014) 

  14. Realizer, "SLM in Action," http://www.goldenprogress.com/milling/realizer-slm-in-action.shtml (Accessed 12 NOV. 2014) 

  15. Conept Laser, "Implants and Medical Instruments with LaserCUSING," http://www.concept-laser.de/ en/industry/medical.html (Accessed 12 NOV. 2014) 

  16. Griffith, L. G. and Naughton, G., "Tissue Engineering: Current Challenges and Expanding Opportunities," Science, Vol. 295, No. 8, pp. 1009-1016, 2002. 

  17. Mikos, A. G. and Temenoff, J. S., "Formation of Highly Porous Biodegradable Scaffolds for Tissue Engineering," Electron. J. Biotechnol., Vol. 3, No. 2, pp. 114-119, 2000. 

  18. Hollister S. J., "Porous Scaffold Design for Tissue Engineering," Nat. Mater., Vol. 4, No. 7, pp. 518-524, 2005. 

  19. 3D Biotek, "3D Insert : Proven & Superior 3D Architecture for in vivo-like 3D Culture," http://www.3dbiotek.com/newsletters/2012/Newsletter201212_2_Web.html (Accessed 12 NOV. 2014) 

  20. Lee, S. J. and Cho, D. W., "Solid Freeform Fabrication Technique in Tissue Engineering," J. Korean Soc. Precis. Eng., Vol. 23, No. 12, pp. 7-15, 2006. 

  21. Park, S. H., Kim, T. G., Kim, H. C., Yang, D. Y., and Park, T. G., "Development of Dual Scale Scaffolds via Direct Polymer Melt Deposition and Electrospinning for Applications in Tissue Regeneration," Acta Biomater., Vol. 4, No. 5, pp. 1198-1207, 2008. 

  22. Kwon, I. K. and Matsuda, T., "Photo-polymerized Microarchitectural Constructs Prepared by Microstereolithography ( $\mu$ SL) using Liquid Acrylateend-capped Trimethylene Carbonate-based Prepolymers," Biomaterials, Vol. 26, No. 14, pp. 1675-1684, 2005. 

  23. Lee, J. W., Ahn, G. S., Kim, D. S., and Cho, D. W., "Development of Nano- and Microscale Composite 3D Scaffolds using PPF/DEF-HA and Microstereolithography," Microelectron. Eng., Vol. 86, No. No. 4, pp. 1465-1467, 2009. 

  24. Kim, T. G., Park, S. H., Chung, H. J., Yang, D. Y., and Park, T. G., "Microstructured Scaffold Coated with Hydroxyapatite/Collagen Nanocomposite Multilayer for Enhanced Osteogenic Induction of Human Mesenchymal Stem Cells," J. Mater. Chem., Vol. 20, No. 40, pp. 8927-8933, 2010. 

  25. Seyednejad, H., Gawlitta, D., Kuiper, R. V., de Bruin, A., van Nostrum, C. F., et al., "In vivo Biocompatibility and Biodegradation of 3D-Printed Porous Scaffolds Based on a Hydroxyl-functionalized Poly( $\varepsilon$ -caprolactone)," Biomaterials, Vol. 33, No. 17, pp. 4309-4318, 2012. 

  26. Ding, C., Qiao, Z., Jiang, W., Li, H., Wei, J., et al., "Regeneration of a Goat Femoral Head Using a Tissue-specific, Biphasic Scaffold Fabricated with CAD/CAM Technology," Biomaterials, Vol. 34, No. 28, pp. 6706-6716, 2013. 

  27. Kim, H. N., Kang, D. H., Kim, M. S., Jiao, A., Kim, D. H., and Suh, K. Y., "Patterning Methods for Polymers in Cell and Tissue Engineering," Ann. Biomed. Eng., Vol. 40, No. 6, pp. 1339-1355, 2012. 

  28. Hockaday, L. A., Kang, K. H., Colangelo, N. W., Cheung, P. Y., Duan, B., et al., "Rapid 3D Printing of Anatomically Accurate and Mechanically Heterogeneous Aortic Valve Hydrogel Scaffolds," Biofabrication, Vol. 4, No. 3, Paper No. 035005, 2012. 

  29. Pataky, K., Braschler, T., Negro, A., Renaud, P., Lutolf, M. P., and Brugger, J., "Microdrop Printing of Hydrogel Bioinks into 3D Tissue-Like Geometries," Adv. Mater., Vol. 24, No. 3, pp. 391-396, 2012. 

  30. Yan, J., Huang, Y., and Chrisey, D. B., "Laser-assisted Printing of Alginate Long Tubes and Annular Constructs," Biofabrication, Vol. 5, No. 1, Paper No. 015002, 2013. 

  31. Park, S. H., Koh, U. H., Kim, M., Yang, D. Y., Suh, K. Y., and Shin, J. H., "Hierarchical Multilayer Assembly of an Ordered Nanofibrous Scaffold via Theramal Fusion Bonding," Biofabrication, Vol. 6, No. 2, Paper No. 024107, 2014. 

  32. Ahn, S., Lee, H., Bonassar, L. J., and Kim, G., "Cells (MC3T3-E1)-laden Alginate Scaffolds Fabricated by a Modified Solid-Freeform Fabrication Process Supplemented with an Aerosol Spraying," Biomacromolecules, Vol. 13, No. 9, pp. 2997-3003, 2012. 

  33. Miller, J. S., Stevens, K. R., Yang, M. T., Baker, B. M., Nguyen, D. H., et al., "Rapid Casting of Patterned Vascular Networks for Perfusable Engineered Three-dimensional Tissues," Nat. Mater., Vol. 11, No. 9, pp. 768-774, 2012. 

  34. Norotte, C., Marga, F. S., Niklason, L. E., and Forgacs, G., "Scaffold-free Vascular Tissue Engineering using Bioprinting," Biomaterials, Vol. 30, No. 30, pp. 5910-5917, 2009. 

  35. Mannoor, M. S., Jiang, Z., James, T., Kong, Y. L., Malatesta, K. A., et al., "3D Printed Bionic Ears," Nano Lett., Vol. 13, No. 6, pp. 2634-2639, 2013. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로