$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

유한 단층 모델 및 순환 경계조건을 이용한 전지구 지진해일 예측 시스템 개발
Development of the Global Tsunami Prediction System using the Finite Fault Model and the Cyclic Boundary Condition 원문보기

한국해안·해양공학회논문집 = Journal of Korean Society of Coastal and Ocean Engineers, v.27 no.6, 2015년, pp.391 - 405  

이준환 (국립기상과학원 지구환경시스템연구과) ,  박은희 (국립기상과학원 지구환경시스템연구과) ,  박순천 (국립기상과학원 지구환경시스템연구과) ,  우승범 (인하대학교 해양과학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 원거리 지진해일에 대응하기 위한 기초 연구로써 유한 단층 모델과 순환 경계조건을 이용한 전지구 지진해일 예측 시스템을 제안하였다. 제안한 전지구 지진해일 예측 시스템을 2014년 칠레 지진해일에 적용하여 원거리 지진해일에 대한 대응 시스템으로써의 가능성을 검토하였다. 전지구 지진해일 예측 시스템의 경계조건, 지배방정식, 격자 크기, 단층 모델에 따른 지진해일 파고와 도달시각을 DART 부이, 조위관측소 관측 자료와 비교함으로써 유한 단층 모델과 순환 경계조건의 중요성을 확인하였다.

Abstract AI-Helper 아이콘AI-Helper

A global tsunami prediction system was suggested for a distant tsunami using a finite fault model and a cyclic boundary condition. The possibility of the suggested system as a distant tsunami response system was checked by applying it into the case of 2014 Chile tsunami. A comparison between the num...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
지진해일이란 무엇인가? 지진해일은 주로 해저지진에 의해 유발되는 장주기의 파이다. 지진해일이 상대적으로 수심이 얕은 해안으로 접근하면 천수효과에 의해 처오름이 발생하여 엄청난 인명과 경제적 피해를 발생시킬 수 있다(Cho and Suh, 2001).
지진해일이 수심이 얕은 해안으로 접근하면 어떤 문제가 발생할 수 있는가? 지진해일은 주로 해저지진에 의해 유발되는 장주기의 파이다. 지진해일이 상대적으로 수심이 얕은 해안으로 접근하면 천수효과에 의해 처오름이 발생하여 엄청난 인명과 경제적 피해를 발생시킬 수 있다(Cho and Suh, 2001). 우리나라에서도 일본 서쪽 근해에서 발생한 1983년 동해 중부 지진과 1993년 북해도 남서외해 지진에 의한 지진해일로 인해 인적·물적 피해를 입은 바 있다(Kim et al.
국내에서 지진해일 DB를 활용한 예시는 무엇이 있는가? 기상청은 이에 대비하기 위하여 한반도 주변해역 시나리오 지진해일 DB(Database)를 활용한 지진해일 통보시스템을 운영하고 있다(Park and Lee, 2014). 지진해일 통보시스템을 이용하여 2005년 3월 20일 일본 후쿠오카 해역 지진(규모 7.0) 발생 당시 우리나라에 해수면으로부터 0.5 m의 파고로 예상되는 지진해일 주의보를 발령할 수 있었다(Park and Cho, 2012).
질의응답 정보가 도움이 되었나요?

참고문헌 (69)

  1. An, C., Seplveda, I. and Liu, P.L.F. (2014). Tsunami source and its validation of the 2014 Iquique, Chile, earthquake. Geophysical Research Letters, 41(11), 3988-3994. 

  2. Bae, J.S., Cho, Y.J., Kwon, S.J. and Yoon, S.B. (2012). Numerical analyses of 2011 East Japan Tsunami propagation towards Korean peninsula. Journal of Korean Society of Coastal and Ocean Engineers. 24(1), 66-76 (in Korean). 

  3. Bae, J.S. and Yoon, S.B. (2010). Construction of tsunami inundation map for real-time quantitative response. Journal of Korean Society of Coastal and Ocean Engineers. 22(5), 287-294 (in Korean). 

  4. Chen, C., Lai, Z., Beardsley, R.C., Sasaki, J., Lin, J., Lin, H., Ji, R. and Sun, Y. (2014). The March 11, 2011 Thoku M9.0 earthquake-induced tsunami and coastal inundation along the Japanese coast: A model assessment. Progress in Oceanography, 123, 84-104. 

  5. Cho, Y.-S. (1995). Numerical simulations of tsunami propagation and run-up. Ph.D. dissertation, Cornell University, USA. 

  6. Cho, Y.-S. and Ha, T. (2010). Characteristics of tsunamis and mitigation planning. Journal of Korean Society of Earth and Exploration Geophysicists. 13(3), 295-300 (in Korean). 

  7. Cho, Y.-S., Sohn, D.H. and Lee, S.O. (2007). Practical modified scheme of linear shallow-water equations for distant propagation of tsunamis. Ocean Engineering, 34(11), 1769-1777. 

  8. Cho, Y.-S. and Suh, S.-W. (2001). Estimation of maximum inundation zone due to tsunamis with moving boundary. Journal of Korean Society of Coastal and Ocean Engineers. 13(2), 100-108 (in Korean). 

  9. Cushman-Roisin, B. and Beckers, J.-M. (2011). Introduction to geophysical fluid dynamics: physical and numerical aspects. Academic Press, 101. 

  10. Dao, M.H. and Tkalich, P. (2007). Tsunami propagation modelling - a sensitivity study. Natural Hazards and Earth System Science, 7(6), 741-754. 

  11. Dutykh, D. and Dias, F. (2009). Tsunami generation by dynamic displacement of sea bed due to dip-slip faulting. Mathematics and Computers in Simulation, 80(4), 837-848. 

  12. Fritz, H.M., Petroff, C.M., Cataln, P.A., Cienfuegos, R., Winckler, P., Kalligeris, N., Weiss, R., Barrientos, S.E., Meneses, G., Valderas-Bermejo, C., Ebeling, C., Papadopoulos, A., Contreras, M., Almar, R., Dominguez, J.C. and Synolakis, C.E. (2011). Field survey of the 27 February 2010 Chile tsunami. Pure and Applied Geophysics, 168(11), 1989-2010. 

  13. Glimsdal, S., Pedersen, G.K., Harbitz, C.B. and Lovholt, F. (2013). Dispersion of tsunamis: does it really matter. Natural Hazards and Earth System Sciences, 13, 1507-1526. 

  14. Gusman, A.R., Murotani, S., Satake, K., Heidarzadeh, M., Gunawan, E., Watada, S., and Schurr, B. (2015). Fault slip distribution of the 2014 Iquique, Chile, earthquake estimated from ocean-wide tsunami waveforms and GPS data. Geophysical Research Letters, 42(4), 1053-1060. 

  15. Ha, T. and Cho, Y.-S. (2015). Tsunami propagation over varying water depths. Ocean Engineering. 101, 67-77. 

  16. Ha, T.-M., Cho, Y.-S., Choi, B.-H. and Kim, S.-M. (2007). Field survey of 2004 Sumatra-Andaman Tsunami: Andaman and Nicobar Islands. Journal of Korean Society of Coastal and Ocean Engineers. 19(1), 97-103 (in Korean). 

  17. Hayes, G.P., Herman, M.W., Barnhart, W.D., Furlong, K.P., Riquelme, S., Benz, H.M., Bergman, E., Barrientos, S., Earle, P.S. and Samsonov, S. (2014). Continuing megathrust earthquake potential in Chile after the 2014 Iquique earthquake. Nature, 512(7514), 295-298. 

  18. Heidarzadeh, M., Satake, K., Murotani, S., Gusman, A.R., and Watada, S. (2014). Deep-Water Characteristics of the Trans-Pacific Tsunami from the 1 April 2014 Mw 8.2 Iquique, Chile Earthquake. Pure and Applied Geophysics, 172(3-4), 719-730. 

  19. Imai, K., Satake, K. and Furumura, T. (2010). Amplification of tsunami heights by delayed rupture of great earthquakes along the Nankai trough. Earth, Planets and Space, 62(4), 427-432. 

  20. Imamura, F., Shuto, N. and Goto, C. (1988). Numerical simulations of the transoceanic propagation of tsunamis. Proceeding of 6th Congress Asian and Pacific Regional Division, IAHR, Japan, 265-272. 

  21. Jeffreys, H. and Bullen, K.E. (1958). Seismological tables. Office of the British Association. 

  22. Kamigaichi, O. (2009). Tsunami forecasting and warning. In Encyclopedia of Complexity and Systems Science, Springer New York, 9592-9618. 

  23. Kikuchi, M. and Kanamori, H. (1982). Inversion of complex body waves. Bulletin of the Seismological Society of America, 72(2), 491-506. 

  24. Kikuchi, M. and Kanamori, H. (1986). Inversion of complex body waves-II. Physics of the Earth and Planetary Interiors, 43(3), 205-222. 

  25. Kikuchi, M. and Kanamori, H. (1991). Inversion of complex body waves-III. Bulletin of the Seismological Society of America, 81(6), 2335-2350. 

  26. Kim, D.-S., Kim, J.-M. and Lee, K.-H. (2007a). Numerical simulation of tsunamis that affected the coastal zone of East Sea. Journal of Korean Society of Coastal and Ocean Engineers, 21(6), 72-80 (in Korean). 

  27. Kim, D.-S., Kim, J.-M., Lee, K.-H. and Son, B.-K. (2007b). Analysis of the effects on the southeastern coast of Korea by a tsunami originating from hypothetical earthquake in Japan. Journal of Korean Society of Coastal and Ocean Engineers, 21(6), 64-71 (in Korean). 

  28. Kim, J.H., Choi, W.H., Bae, J.S. and Yoon, S.B. (2008). Propagation characteristics of potential tsunamis in Okinawa trough. Journal of Korean Society of Coastal and Ocean Engineers, 20(3), 268-276 (in Korean). 

  29. Kirby, J.T., Shi, F., Tehranirad, B., Harris, J.C. and Grilli, S.T. (2013). Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects. Ocean Modelling, 62, 39-55. 

  30. Koketsu, K., Yokota, Y., Nishimura, N., Yagi, Y., Miyazaki, S., Satake, K., Fujii, Y., Miyake, H., Sakai, S., Yamanaka, Y. and Okada, T. (2011). A unified source model for the 2011 Tohoku earthquake. Earth and Planetary Science Letters, 310, 480-487. 

  31. Kowalik, Z., Knight, W., Logan, T. and Whitmore, P. (2005). Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Science of Tsunami Hazards, 23(1), 40-56. 

  32. Kowalik, Z., Knight, W., Logan, T. and Whitmore, P. (2007). The tsunami of 26 December, 2004: numerical modeling and energy considerations. Pure and Applied Geophysics, 164, 1-15. 

  33. Lee, D.K., Ryoo, Y., Yang, J., Kim, S., Youn, Y., Lee, J.H. and Park, J. (2005). A way for establishing tsunami scenario data base. Journal of Korean Society of Earth and Exploration Geophysicists, 8(2), 93-96 (in Korean). 

  34. Lee, K.H., Kim, M.J., Kawasaki, K., Cho, S. and Kim D.S. (2012). Effects on the Jeju Island of tsunamis caused by triple interlocked Tokai, Tonankai, Nankai Earthquakes in Pacific Coast of Japan. Journal of Korean Society of Coastal and Ocean Engineers, 24(4), 295-304 (in Korean). 

  35. Lima, V.V., Miranda, J.M., Baptista, M.A., Catalao, J., Gonzalez Rodriguez, E.M., Otero, L., Olabarrieta, J.A. and Carreo Herrero, E. (2010). Impact of a 1755-like tsunami in Huelva, Spain. Natural Hazards and Earth System Science, 10(1), 139-148. 

  36. Lin, S.C., Wu, T.R., Yen, E., Chen, H.Y., Hsu, J., Tsai, Y.L., Lee, C.-J. and Liu, P.L.F. (2015). Development of a tsunami early warning system for the South China Sea. Ocean Engineering, 100, 1-18. 

  37. Liu, P.L., Woo, S.B. and Cho, Y.S. (1998). Computer programs for tsunami propagation and inundation. Cornell University. 

  38. Lovholt, F., Pedersen, G. and Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research: Oceans (1978-2012), 113(C9), doi:10.1029/2007JC004603. 

  39. Megawati, K., Shaw, F., Sieh, K., Huang, Z., Wu, T.R., Lin, Y., Tan, S.K. and Pan, T.-C. (2009). Tsunami hazard from the subduction megathrust of the South China Sea: Part I. source characterization and the resulting tsunami. Journal of Asian Earth Sciences, 36(1), 13-20. 

  40. Meinig, C., Stalin, S.E., Nakamura, A.I. and Milburn, H.B. (2005). Real-time deep-ocean tsunami measuring, monitoring, and reporting system: The NOAA DART II description and disclosure. NOAA Pacific Marine Environmental Laboratory (PMEL), Tech. Rep. 

  41. Melgar, D. and Bock, Y. (2015). Kinematic Earthquake Source Inversion and Tsunami Runup Prediction with Regional Geophysical Data. Journal of Geophysical Research: Solid Earth, 120(5), 3324-3349. 

  42. Miyoshi, T., Saito, T., Inazu, D. and Tanaka, S. (2015). Tsunami modeling from the seismic CMT solution considering the dispersive effect: a case of the 2013 Santa Cruz Islands tsunami. Earth, Planets and Space, 67(1), 1-7. 

  43. Mori, N., Takahashi, T., Yasuda, T. and Yanagisawa, H. (2011). Survey of 2011 Tohoku earthquake tsunami inundation and runup. Geophysical Research Letters, 38, L00G14, doi:10.1029/2011GL049210. 

  44. Murotani, S., Iwai, M., Satake, K., Shevchenko, G. and Loskutov, A. (2014). Tsunami forerunner of the 2011 Tohoku Earthquake observed in the Sea of Japan. Pure and Applied Geophysics, 1-15. 

  45. National Oceanic and Atmospheric Administration (2005) Deep-Ocean Assessment and Reporting of Tsunamis (DART(R)). National Geophysical Data Center, NOAA. doi:10.7289/V5F18WNS. 

  46. Ohmachi, T., Tsukiyama, H. and Matsumoto, H. (2001). Simulation of tsunami induced by dynamic displacement of seabed due to seismic faulting. Bulletin of the Seismological Society of America, 91(6), 1898-1909. 

  47. Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135-1154. 

  48. Park, K.-W. and Cho, Y.-S. (2012). Hazard map with probable maximum tsunamis. Journal of Korean Society of Hazard Mitigation, 12(2), 263-270 (in Korean). 

  49. Park, S.-C. and Lee, J.-W. (2014). Fundamental research for improvement of tsunami warning system of KMA. Proceedings of Earthquake Engineering Society of Korea Conference 2014, 85-86 (in Korean). 

  50. Pawlowicz, R., Beardsley, B. and Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T_TIDE. Computers & Geosciences, 28(8), 929-937. 

  51. Purser, R.J. (1988). Accurate numerical differencing near a polar singularity of a skipped grid. Monthly weather review, 116(5), 1067-1076. 

  52. Saito, T. and Furumura, T. (2009). Three-dimensional tsunami generation simulation due to sea-bottom deformation and its interpretation based on the linear theory. Geophysical Journal International, 178(2), 877-888. 

  53. Shevchenko, G., Ivelskaya, T. and Loskutov, A. (2014). Characteristics of the 2011 Great Tohoku tsunami on the Russian Far East coast: Deep-water and coastal observations. Pure and Applied Geophysics, 171(12), 3329-3350. 

  54. Shuto, N., Suzuki, T. and Hasegawa, K. (1986). A study of numerical techniques on the tsunami propagation and run-up. Science of Tsunami Hazard, 4, 111-124. 

  55. Sim, J.-Y., Ha, T.-M. and Cho, Y.-S. (2009). Relationship between maximum wave heights of tsunamis and earthquake parameters. Journal of Korean Society of Hazard Mitigation, 9(3), 135-142 (in Korean). 

  56. Suppasri, A., Imamura, F. and Koshimura, S. (2010). Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coastal Engineering Journal, 52(2), 107-132. 

  57. Tatehata, H. (1998). The new tsunami warning system of the Japan Meteorological Agency. Science of Tsunami Hazards, 16(1), 39-49. 

  58. Titov, V., Gonzalez, F., Bernard, E., Eble, M., Mofjeld, H., Newman, J. and Venturato, A. (2005). Real-Time Tsunami Forecasting:Challenges and Solutions. Natural Hazards, 35(1), 35-41. 

  59. Tsushima, H., Hino, R., Tanioka, Y., Imamura, F. and Fujimoto, H. (2012). Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting. Journal of Geophysical Research: Solid Earth (1978-2012), 117(B03311), doi:10.1029/2011JB008877. 

  60. Wang, X. (2008). Numerical modelling of surface and internal waves over shallow and intermediate water. Ph.D. dissertation, Cornell University, USA. 

  61. Wang, X. and Liu, P.L.F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44(2), 147-154. 

  62. Watada, S., Kusumoto, S. and Satake, K. (2014). Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research:Solid Earth, 119(5), 4287-4310. 

  63. Wijetunge, J.J. (2012). Nearshore tsunami amplitudes off Sri Lanka due to probable worst-case seismic scenarios in the Indian Ocean. Coastal Engineering, 64, 47-56. 

  64. Wijetunge, J.J., Wang, X. and Liu, P.L.F. (2008). Indian Ocean Tsunami on 26 December 2004: numerical modeling of inundation in three cities on the south coast of Sri Lanka. Journal of Earthquake and Tsunami, 2(2), 133-155. 

  65. Yamazaki, Y. and Cheung, K.F. (2011). Shelf resonance and impact of nearfield tsunami generated by the 2010 Chile earthquake. Geophysical Research Letters, 38(12), L12605. 

  66. Yokota, Y., Koketsu, K., Fujii, Y., Satake, K., Sakai, S., Shinohara, M. and Kanazawa, T. (2011). Joint inversion of strong motion, teleseismic, geodetic, and tsunami datasets for the rupture process of the 2011 Tohoku earthquake. Geophysical Research Letters, 38, L00G21, doi:10.1029/2011GL050098. 

  67. Yoon, S.B. (2002). Propagation of distant tsunamis over slowly varying topography. Journal of Geophysical Research: Oceans (1978-2012), 107(C10), 1-11. 

  68. Yoon, S.B., Baek, U., Park, W.K. and Bae, J.S. (2012). Practical forecast-warning system for distant tsunamis. Journal of Korea Water Resources Association. 45(10), 997-1008 (in Korean). 

  69. Yoon, S.B., Lim, C.H. and Choi, J. (2007). Dispersion-correction finite difference model for simulation of transoceanic tsunamis. Terrestrial Atmospheric and Oceanic Sciences, 18(1), 31-53. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로