$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록
AI-Helper 아이콘AI-Helper

음용수 및 생활용수로 이용되고 있는 농촌 지역 천부대수층 음용지하수를 대상으로 계절적·공간적 수리지화학적 특성과 수질 저하 원인을 분석하였다. 지하수 관정이 설치된 대수층은 지표로부터 전답토, 풍화토, 풍화암, 기반암으로 구성되어 있으며 음용지하수의 대부분은 풍화토와 풍화암에 형성된 지하수가 이용되는 것으로 조사되었다. 음용지하수의 지화학적 유형은 대부분 오염물로 분류되고 있는 NO3와 Cl 이온의 영향을 받는 것으로 보이며 또한 상류로부터 유출된 오염물들이 하류 방향으로 이동하면서 불규칙적으로 분포하는 오염원에 의해 농도 증가가 일어나고 있는 것으로 나타났다. 음용지하수내 주 양이온 성분은 계절에 따라 큰 변화를 보이지 않으며 NO3와 Cl 성분은 배경 지하수에 비해 고농도 분포를 보여 외부로부터의 오염원 유입을 나타내주고 있다. 전기전도도 변화에 따른 주요 오염물 농도는 양의 상관관계를 보여 지하수 수질에 주요 오염물들의 영향이 크게 작용하고 있는 것을 보여준다. 오염물질 상관성 분석Ternary plot 분석 결과, 유기질 비료 내 오염물 성분은 음용지하수의 NO3, Cl, SO42−와 양의 상관관계를 보여주어 유기질 비료가 음용지하수내 주 오염원임을 보여준다. 또한 유기질 비료의 NO3와 Cl과 함께 가축분뇨 등 다른 오염원에 의해 추가적으로 발생된 SO42−가 수질을 저하시키는 주요 요인으로 분석되었다. 음용지하수 및 오염원내 포함되어 있는 오염물질 성분은 농도 분포에 있어 차이가 크지만 각각의 음용지하수를 구성하는 성분 비율 특성 그리고 오염물질 상호간의 상관성 분석을 이용하게 되면 음용지하수 수질 저하 요인 분석에 매우 유용한 정보를 제공해줄 수 있을 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Spatial and seasonal variations in hydrogeochemical characteristics and the factors affecting the deterioration in quality of shallow portable groundwater in an agricultural area are examined. The aquifer consists of (from the surface to depth) agricultural soil, weathered soil, weathered rock, and ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 본 연구에서는 음용수 및 생활용수로 이용되고 있는 천부대수층 음용지하수의 계절적·공간적 수질 특성과 수질 저하 원인 분석을 목적으로 하고 있다. 또한 지화학적 특성 분석을 통해 음용지하수로 사용되고 있는 천부대수층에 대한 주 오염원 분석을 수행하였다.

가설 설정

  • 음이온의 주성분인 HCO3−+CO32−를 기본으로 하여 NO3−와 Cl− 그리고 SO42− 이온 농도를 밀리 당량(milliequivalent)으로 변환 후, 이들 4가지 성분을 각각 백분율(%)로 계산하여 분석에 이용하였다. 오염원 각각의 상관성 및 오염 기여를 분석하기 위해 HCO3−+CO32−와 함께 오염원 중 두 가지 성분의 밀리당량 합이 100%로 가정하였으며 NO3−와 Cl− 그리고 SO42−에 대한 오염원 분석을 수행하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (19)

  1. Adesemoye, A. O. and Kloepper, J. W., 2009, Plantmicrobes interactions in enhanced fertilizer-use efficiency, Applied Microbiology and Biotechnology, 85(1), 1-12. 

  2. Gooddy, D. C., Withers, P. J. A., Mcdonald, H. G., and Chilton, P. J., 1998, Behaviour and impact of cow slurry beneath a storage lagoon: II. Chemical composition of chalk porewater after 18 years, Water, Air, and Soil Pollution, 107(1), 51-72. 

  3. Jeon, S. R., Park, S. J., Kim, H. S., Jung, S. K., Lee, Y, U., and Chung J. I., 2011, Hydrogeochemical characteristics and estimation of nitrate contamination sources of groundwater in the Sunchang area, Korea, Journal of the Geological Society of Korea, 47(2), 185-197 (in Korean with English abstract). 

  4. Kim, H. J., Kaown, D. I., Mayer, B., Lee, J. Y., Hyun, Y. J., and Lee, K. K., 2015, Identifying the sources of nitrate contamination of groundwater in an agricultural area (Haean basin, Korea) using isotope and microbial community analyses, Science of the Total Environment, 533, 566-575. 

  5. Kim, K. H., Yun, S. T., Chae, G. T., Choi, B. Y., Kim, S. O., Kim, K. J., Kim, H. S., and Lee, C. W., 2002, Nitrate contamination of alluvial groundwaters in the Keum River watershed area: Source and behaviors of nitrate, and suggestion to secure water supply, The Journal of Engineering Geology, 12(4), 471-484 (in Korean with English abstract). 

  6. Kim, Y. T. and Woo, N. C., 2003, Nitrate contamination of shallow groundwater in an agricultural area having intensive livestock facilities, Journal of soil and groundwater environment, 8(1), 57-67 (in Korean with English abstract). 

  7. Kirchmann, H. and Pettersson, S., 1995, Human urinechemical composition and fertilizer use efficiency, Fertilizer Research, 40(2), 149-154. 

  8. Koh, D. C., Mayer, B., Lee, K. S., and Ko, K. S., 2010, Land-use controls on sources and fate of nitrate in shallow groundwater of an agricultural area revealed by multiple environmental tracers, Journal of Contaminant Hydrology, 118(1-2), 62-78. 

  9. Koh, E. H., Kaown, D., Mayer, B., Kang, B. R., Moon, H. S., and Lee, K. K., 2011, Hydrogeochemistry and isotopic tracing of nitrate contamination of two aquifer systems on Jeju island, Korea, Journal of Environmental Quality, 41(6), 1835-1845. 

  10. Li, X. D., Masuda, H, Kusakabe M., Yanagisawa, F., and Zeng, H. A., 2006, Degradation of groundwater quality due to anthropogenic sulfur and nitrogen contamination in the Sichuan Basin, China, Geochmical Journal, 40, 309-332. 

  11. Liu, G. D., Wu, W. L., and Zhang, J., 2005, Regional differentiation of non-point source pollution of agriculture-derived nitrate nitrogen in groundwater in northern China. Agriculture, Ecosystems and Environment, 107(2-3), 211-220. 

  12. Ministry of Environment (ME), 2014, Statistics of waterworks, Report, 1p (in Korean). 

  13. National Institute of Environmental Research (NIER), 2014, Case study of groundwater management for drinking in highly contaminated area, 10p (In Korean with English abstract). 

  14. Negrel, P., 1999, Geochemical study of a granitic area-The Margeride Mountains, France: Chemical element behavior and 87Sr/86Sr constraints, Aquatic Geochemistry, 5(2), 125-165. 

  15. Negrel, P., and Pauwels, H., 2004, Interaction between different groundwaters in Brittany catchments (France): characterizing multiple sources through strontium- and sulphur isotope tracing, Water, Air, and Soil Pollution, 151(1), 261-285. 

  16. Piper, A. M., 1994, A graphic procedure in the geochemical interpretation of water-analyses, Transactions, American Geophysical Union, 25(6), 914-928. 

  17. Savard, M. M., Somers, G., Smirnoff, A., Paradis, D., Bochove, E. V., and Liao, S., 2010, Nitrate isotopes unveil distinct seasonal N-sources and the critical role of crop residues in groundwater contamination, Journal of Hydrology, 381(1-2), 134-141. 

  18. Sherwood, W. C., 1989, Chloride loading in the South Fork of the Shenandoah River, Virginia, U.S.A., Environmental Geology and Water Sciences, 14(2), 99-106. 

  19. Zhang, Y., Li, F., Zhang, Q., Li, J., and Liu, Q., 2014, Tracing nitrate pollution sources and transformation in surface- and ground-waters using environmental isotopes, Science of the Total Environment, 490(15), 213-222. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로