$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Degradation Characteristics of A Novel Multi-Enzyme-Possessing Bacillus licheniformis TK3-Y Strain for the Treatment of High-Salinity Fish Wastes and Green Seaweeds 원문보기

Fisheries and aquatic sciences, v.18 no.4, 2015년, pp.349 - 357  

Kang, Kyeong Hwan (Department of Biotechnology, Pukyong National University) ,  Kim, Joong Kyun (Department of Biotechnology, Pukyong National University)

Abstract AI-Helper 아이콘AI-Helper

To reutilize fisheries waste, we isolated a bacterial strain from a coastal area located in Busan. It was identified as Bacillus licheniformis TK3-Y. Using plate assay and 500-mL flask experiments, we found that the isolate simultaneously possessed cellulolytic, proteolytic, and lipolytic activities...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • This study presents the possibility of reutilization of mixedtype fisheries waste through biodegradation by a multi-enzyme-possessing bacterium. The degradation characteristics of a newly isolated bacterium appear to be applicable for the reutilization of high-salinity fishery waste, and food waste as well.

가설 설정

  • To satisfy the above requirements, a salt-tolerant strain that possesses multiple enzymes involved in the degradation of carbohydrates, proteins, and lipids is essential. In this study, we isolated a novel strain exhibiting these characteristics. The degradation of high-salinity fisheries waste containing green seaweed by this strain was characterized for industrial use.
본문요약 정보가 도움이 되었나요?

참고문헌 (42)

  1. Acharya S and Chaudhary A. 2012. Alkaline cellulase produced by a newly isolated thermophilic Aneurinibacillus thermoaerophilus WBS2 from hot spring, India. Afr J Microbiol Res 6, 5453-5458. 

  2. Acharya S and Chaudhary A. 2012. Optimization of Fermentation Conditions for Cellulases Production by Bacillus licheniformis MVS1 and Bacillus sp. MVS3 Isolated from Indian Hot Spring. Braz Arch Biol Technol 55, 497-503. 

  3. Annamalai N, Thavasi R, Vijayalakshme S and Balasubramanian T. 2011. A novel thermostable and halostable carboxymethylcellulase from marine bacterium Bacillus licheniformis AU01. World J Microbiol Biotechnol 27, 2111-2115. 

  4. Annamalai N, Rajeswari MV, Sahu SK and Balasubramanian T. 2014. Purification and characterization of solvent stable, alkaline proteasefrom Bacillus firmus CAS 7 by microbial conversion of marine wastesand molecular mechanism underlying solvent stability. Proc Biochem 49, 1012-1019. 

  5. Cho YJ, Lee HH, Kim BK, Gye HJ, Jung WY and Shim KB. 2014. Quality evaluation to determine the grading of commercial salt-fermented fish sauce in Korea. J Fish Mar Sci Edu 26, 823-830. 

  6. Dalmau E, Montesinos JL, Lotti M and Casas C. 2000. Effect of different carbon source on lipase production by Candida rugosa. Enz Microb Technol 26, 657-663. 

  7. Ghani M, Ansari A, Afsheen A, Zhora RR, Siddiqui NN and Qader SAU. 2013. Isolation and characterization of different strains of Bacillus licheniformis for the production of commercially significant enzymes. Pak J Pharm Sci 26, 691-697. 

  8. Ghose TK. 1987. Measurement of cellulase activities. Pure Appl Chem 59, 257-268. 

  9. Goldbeck R, Ramos MM, Pereira GAG and Maugeri-Filho F. 2013. Cellulase production from a new strain Acremonium strictum isolated from the Brazilian biome using different substrate. Bioresour Technol 128, 797-803. 

  10. Gwon BG and Kim JK. 2012. Feasibility study on production of liquid fertilizer in a 1 $m^3$ reactor using fishmeal wastewater for commercialization. Environ Eng Res 17, 3-8. 

  11. Hmidet N, Ali NE, Haddar A, Kanoun S, Alya SK and Nasri M. 2009. Alkaline proteases and thermostable ${\alpha}$ -amylase co-produced by Bacillus licheniformis NH1: Characterization and potential application as detergent additive. Biochem Eng J 47, 71-79. 

  12. IMO. 2006. International rules on dumping of wastes at sea to be strengthened with entry into force of 1996 Protocol. Retrieved from http://www.imo.org/blast/mainframe.asp?topic_id1320&doc_ id614. 

  13. Kanasa RC, Salwan R, Dhar H, Dutt S and Gulati A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol 57, 503-507. 

  14. Kang SY and Kim JK. 2014. Reuse of red seaweed waste by a novel bacterium, Bacillus sp. SYR4 isolated from a sandbar. World J Microbiol Biotechnol 31, 209-217. 

  15. Kim EJ, Fathoni A, Jeong GT, Jeong HD, Nam TJ, Kong IS and Kim JK. 2013. Microbacterium oxydans, a novel alginate- and laminarindegrading bacterium for the reutilization of brown-seaweed waste. J Environ Manage 130, 153-159. 

  16. Kim EY, Kim DG, Kim YR, Choi SY and Kong IS. 2009. Isolation and identification of halotolerant Bacillus sp. SJ-10 and Characterization of its extracellular protease. Kor J Microbiol 45, 193-199. 

  17. Kim JK. 2011. Fishery waste. In: Treatment of fishery waste by biotechnology. Pukyong National University Press, Busan, Korea. 

  18. Kim JK, Kim JB, Cho KS and Hong YK. 2007. Isolation and identification of microorganisms and their aerobic biodegradation of fishmeal wastewater for liquid-fertilization. Int Biodeter Biodegr 59, 156-165. 

  19. Kim JK, Dao VT, Kong IS and Lee HH. 2010. Identification and characterization of microorganisms from earthworm viscera for the conversion of fish waste into liquid fertilizer. Bioresour Technol 101, 5131-5136. 

  20. Kim JK, Kim EJ and Kang KH. 2014. Achievement of zero emissions by the bioconversion of fishery waste into fertilizer. In: Fertilizers: components, uses in agriculture and environmental impacts. Lopez-Valdez F and Fernandes-Luqueno F. Nova Publisher, New York, U.S.A., pp 69-94. 

  21. Kim YR, Kim EY, Lee JM, Kim JK and Kong IS. 2013. Characterisation of a novel Bacillus sp. SJ-10 ${\beta}$ -1,3-1,4-glucanase isolated from jeotgal, a traditional Korean fermented fish. Bioprocess Biosyst Eng 36, 721-727. 

  22. Lin CW, Wu CH, Tran DT, Shih MC, Li WH and Wu CF. 2011. Mixed culture fermentation from lignocellulosic materials using thermophilic lignocellulose-degrading anaerobes. Process Biochem 46(2), 489-493. 

  23. Masomian M, Rahman RNZRA, Salleh AB and Basri M. 2013. A new thermostable and organic solvent-tolerant lipase from Aneurinibacillus thermoaerophilus strain HZ. Process Biochem 48, 169-175. 

  24. Meyers SP and Ahearn DG. 1977. Extracellular proteolysis by Candida lypolytica. Mycology 69, 646-651. 

  25. Mishra RR, Prajapati S, Das J, Dangar TK, Das N and Thatoi H. 2011. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosp 84, 1231-1237. 

  26. NFRDI (National Fisheries Research and Development Institute). 2009. Composition of fisheries product in Korea. Retrieved from http://www.nfrdi.re.kr/portal/page?idaq_seafood_1&typeintro on August 14. 

  27. Parrado J, Rodriguez-Morgado B, Tejada M, Hernandez T and Garcia C. 2014. Proteomic analysis of enzyme production by Bacillus licheniformis using different feather wastes as the sole fermentation media. Enz Microb Technol 57, 1-7. 

  28. Sangeetha R, Geetha A and Arulpandi I. 2010. Concomitant production of protease and lipase by Bacillus licheniformis VSG1: production, purification and characterization. Braz J Microbiol 41, 179-185. 

  29. Seo DC, Ko JA, Gal SW and Lee SW. 2010. Characterizaion of Bacillus licheniformis KJ-9 isolated from soil. J Life Sci 20, 403-410. 

  30. Seo JK, Park TS, Kwon IH, Piao MY, Lee CH and Ha JK. 2013. Characterization of cellulolytic and xylanolytic enzymes of Bacillus licheniformis JK7 isolated from the rumen of a native Korean goat. Asian-Aust J Anim Sci 26, 50-58. 

  31. Sharma CK, Sharma PK and Kanwar SS. 2012. Optimization of production conditions of lipase from B. licheniformis MTCC-10498. Res J Recent Sci 1, 25-32. 

  32. Rastogi G, Bhalla A, Adhikari A, Bischoff KM, Hughes SR, Christopher LP and Sani RK. 2010. Characterization of thermostable cellulases produced by Bacillus and Geobacillus strains. Bioresour Technol 101, 8798-8806. 

  33. Rathi P, Saxena RK and Gupta R. 2001. A novel alkaline lipase from Burkholderia cepacia for detergent formulation. Proc Biochem 37, 187-192. 

  34. Raval VH, Pillai S, Rawal CM and Singh SP. 2014. Biochemical and structural characterization of detergent-stable serine alkaline protease from seawater haloalkaliphilic bacteria. Process Biochem 49, 955-962. 

  35. Song P, Chen C, Tian Q, Lin M, Huang H and Li S. 2013. Two-stage oxygen supply strategy for enhanced lipase production by Bacillus subtilis based on metabolic flux analysis. Biochem Eng J 71, 1-10. 

  36. Tamura K, Peterson day, Peterson N, Stecher G, Nei M and Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739. 

  37. Toyokawa Y, Takahara H, Reungsang A, Fukuta M, Hachimine Y, Tachibana S and Yasuda M. 2010. Purification and characterization of a halotolerant serine proteinase from thermotolerant Bacillus licheniformis RKK-04 isolated from Thai fish sauce. Appl Microbiol Biotechnol 86, 1867-1875. 

  38. Trivedi N, Gupta V, Kumar M, Kumari P, Reddy CRK and Jha B. 2011. An alkali-halotolerant cellulase from Bacillus flexus isolated from green seaweed Ulva lactuca. Carbohyd Pol 83, 891-897. 

  39. van Dyk JS, Sakka M, Sakka K and Pletschke BI. 2009. The cellulolytic and hemi-cellulolytic system of Bacillus licheniformis SVD1 and the evidence for production of a large multi-enzyme complex. Enz Microb Technol 45, 372-378. 

  40. Vasan PT, Piriya PS, Prabhu DIG and Vennison SJ. 2011. Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresour Technol 102, 2585-2589. 

  41. Veerabadran V, Balasudari N, Devi M and Kumar M. 2012. Optimization and production of proteinacious chicken feather fertilizer by proteolytic activity of Bacillus sp. MPTK 6. Indian J Innovations Dev 1, 193-198. 

  42. Zhu D, Tanabe SH, Xie C, Honda day, Sun J and Ai L. 2014. Bacillus ligniniphilus sp. nov., an alkaliphilic and halotolerant bacterium isolated from sediments of the South China Sea. Int J Syst Evol Microbiol 64, 1712-1717. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로