$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 무주 승륭 아연광상의 광석광물과 생성환경
Ore Minerals and Genetic Environments of the Seungryung Zn Deposit, Muzu, Korea 원문보기

자원환경지질 = Economic and environmental geology, v.48 no.1, 2015년, pp.1 - 13  

염태선 (공주대학교 지질환경과학과) ,  신동복 (공주대학교 지질환경과학과)

초록
AI-Helper 아이콘AI-Helper

무주분지에 발달하는 승륭 아연광상 주변 지질은 선캠브리아기의 우백질 화강편마암, 백악기 쇄설암, 화산쇄설암과 관입암체로 구성되며, 광상은 편마암내 편리를 따라 협재하는 석회암을 교대한 열수교대광상으로 스카른화작용을 미약하게 받았다. 광화작용은 석류석, 휘석과 같은 스카른 광물이 형성되는 초기와 자철석, 섬아연석, 황동석, 자류철석, Pb-Ag-Bi-S계 등의 금속 광물이 정출되는 중기, 그리고 녹니석과 백철석 등의 변질 광물 및 저온 광물이 형성되는 후기로 구분된다. 섬아연석의 경우 염주(bead chains)와 분말(dusting)조직 등의 황동석 병변조직이 특징적으로 나타나며, Pb-Ag-Bi-S계 광물로는 헤이로브스카이트-에스키모아이트 고용체, 릴리아나이트-구스터바이트 고용체, 그리고 비킨자이트 등이 산출된다. 황화광물의 ${\delta}^{34}S$ 값은 황철석 3.4~4.1‰, 섬아연석 3.3~4.3‰, 황동석 4.0~4.3‰, 그리고 방연석 2.8‰로서 비교적 좁은 범위를 나타내며 광상을 형성시킨 황이 마그마에서 유래되었음을 시사한다. 또한 동위원소 지질온도계를 적용한 생성온도는 $346{\sim}431^{\circ}C$로서 비교적 고온에서 광화작용이 진행된 것으로 보인다. 섬아연석의 FeS 함량은 6.58~20.16 mole%(평균 16.58 mole%)로 비교적 높은 편이며, 국내 주요 스카른 연-아연 광상들과 유사하게 Mn이 Cd에 비해 부화되어 나타난다. 반면, 주변 설천광화대 금-은 광상은 Cd가 부화되어 천열수 금-은 광상과 유사한 특징을 나타내는데 이는 관계화성암을 중심으로 고온에서 승륭광상의 자철석, 섬아연석이 정출되고 이후 온도가 감소하고 광화유체의 조성이 변하면서 주변 지역의 금-은 광화작용이 진행된 것으로 여겨진다.

Abstract AI-Helper 아이콘AI-Helper

The geology of the Seungryung Zn deposit, located in the Muzu basin, consists of Precambrian leucocratic granitic gneiss, Cretaceous clastic rocks, pyroclastic rocks, and intrusive rocks. The deposit shows a weakly skarnized hydrothermal replacement ore developed along limestone bed in the gneiss. T...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 그러나 설천광화대에 인접하여 분포하는 승륭광상은 과거 비교적 큰 규모로 아연을 개발한 적이 있으나 한국의 광상(KMPC, 1990)과 광상시추조사보고(KMPC, 1982; 1983)의 조사 자료만 있을 뿐 광상에 대한 체계적인 연구는 이루어진 바가 없다. 따라서 본 연구에서는 승륭광상의 주변지질, 광석광물의 산출양상, 광물화학 및 동위원소 연구를 실시하여 광상의 생성환경 및 특징을 고찰하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
광화작용은 어떻게 구분되는가? 무주분지에 발달하는 승륭 아연광상 주변 지질은 선캠브리아기의 우백질 화강편마암, 백악기 쇄설암, 화산쇄설암과 관입암체로 구성되며, 광상은 편마암내 편리를 따라 협재하는 석회암을 교대한 열수교대광상으로 스카른화작용을 미약하게 받았다. 광화작용은 석류석, 휘석과 같은 스카른 광물이 형성되는 초기와 자철석, 섬아연석, 황동석, 자류철석, Pb-Ag-Bi-S계 등의 금속 광물이 정출되는 중기, 그리고 녹니석과 백철석 등의 변질 광물 및 저온 광물이 형성되는 후기로 구분된다. 섬아연석의 경우 염주(bead chains)와 분말(dusting)조직 등의 황동석 병변조직이 특징적으로 나타나며, Pb-Ag-Bi-S계 광물로는 헤이로브스카이트-에스키모아이트 고용체, 릴리아나이트-구스터바이트 고용체, 그리고 비킨자이트 등이 산출된다.
무주분지에 발달하는 승륭 아연광상 주변 지질은 무엇으로 구성되는가? 무주분지에 발달하는 승륭 아연광상 주변 지질은 선캠브리아기의 우백질 화강편마암, 백악기 쇄설암, 화산쇄설암과 관입암체로 구성되며, 광상은 편마암내 편리를 따라 협재하는 석회암을 교대한 열수교대광상으로 스카른화작용을 미약하게 받았다. 광화작용은 석류석, 휘석과 같은 스카른 광물이 형성되는 초기와 자철석, 섬아연석, 황동석, 자류철석, Pb-Ag-Bi-S계 등의 금속 광물이 정출되는 중기, 그리고 녹니석과 백철석 등의 변질 광물 및 저온 광물이 형성되는 후기로 구분된다.
기존 광화대 및 광상에 대한 탐사 및 재평가가 활발해진 이유는 무엇인가? 광물자원의 안정적 수급이 국가성장동력 확보 측면에서 그 중요성이 커지는 가운데 정부에서도 유연탄, 우라늄, 철, 동, 아연, 니켈 등의 6대 전략광종을 지정하고 국내외 광상들에 대한 탐사, 개발 및 투자에 많은 노력을 기울이고 있다. 이를 위해 새로운 미개척지 (green field)에 대한 신규 탐사 외에도 기존 광화대 및 광상(brown field)에 대한 탐사 및 재평가가 활발히 진행되어 오고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (50)

  1. Bae, Y.B. (1992) A study on the Bug-ap orebody in the Shinyemi mine. Jour. Korean Earth Sci. Soc., v.13, p.127-135. 

  2. Barton, P.B. (1978) Some ore textures involving sphalerite from the Furutobe mine, Akita Prefecture, Japan. Mining Geol., v.28, p.293-300. 

  3. Barton, P.B. and Bethke, P.M. (1987) Chalcopyrite disease in sphalerite: Pathology and epidemiology. Am. Mineralogist, v.72, p.451-467. 

  4. Chakrabarti, A.K. (1967) On the trace element geochemistry of Zawar sulphides and its relation to metallogenesis. Canadian Mineralogist, v.9, p.258-262. 

  5. Choi, B.K., Choi, S.G., Seo, J.U., Yoo, I.K., Kang, H.S. and Koo, M.H. (2010) Mineralogical and geochemical characteristics of the Wolgok-Seongok orebodies in the Gagok skarn deposit : their genetic implications. Econ. Environ. Geol., v.43, p.477-490. 

  6. Choi, S.G. (1993) Compositional variations of sphalerites and their genetic characteristics from gold and/or silver deposits in central Korea. Econ. Environ. Geol., v.26, p.135-144. 

  7. Choi, S.G., Choi, B.K., Ahn, Y.H. and Kim, T.H. (2009) Re-evaluation of genetic environments of zinc-lead deposits to predict hidden skarn orebody. Econ. Environ. Geol., v.29, p.1-9. 

  8. Choi, S.G., Chung, J.I. and Imai, N. (1986) Compositional variation of arsenopyrites in arsenic and polymetallic ores from the Ulsan mine, Republic of Korea, and their application to a geothermometer. Jour. Korean Inst. Mining Geol., v.19, p.199-218. 

  9. Choi, S.G., Pak, S.J., Lee, P.K. and Kim, C.S. (2004) An overview of geoenvironmental implications of mineral deposits in Korea. Econ Environ. Geol., v.37, p.1-19. 

  10. Chon, H.T. and Shimazaki H. (1986) Iron, manganese and cadmium contents of sphalerites and their genetical implications to hydrothermal metallic ore deposits in Korea. Jour. Korean Inst. Mining Geol., v.19, p.139-149. 

  11. Faure, G. (1986) Principles of isotope geology. 2nd ed., John Wiley & Sons, p.589. 

  12. Fleischer, M. (1955) Minor elements in some sulfide minerals. Economic Geology, v.50, p.970-1024. 

  13. Im, H.K., Shin, D.B. and Heo, S.H. (2014) Occurrence and geochemical characteristics of the Haenam Pb-Zn skarn deposit. Econ. Environ Geol, v.47, p.363-379. 

  14. Kim, C.J. and Park, H.I. (1984) Mineral paragenesis and fluid inclusions of Geoje copper ore deposits. Jour. Korean Inst. Mining Geol., v.17, p.245-258. 

  15. Kim, K.H. and Nakai, N. (1980) Sulfur isotope composition and isotopic temperatures of some base metal ore deposits, South Korea. Jour. Geol. Soc. Korea, v.16, p.124-134. 

  16. Kim, K.H. and Nakai, N. (1982) Sulfur isotope composition and isotopic temperatures of the Shinyemi lead and zinc ore deposits, western Taebaegsan metallogenic belt, Korea. Jour. Korean Inst. Mining Geol., v.15, p.155-166. 

  17. Kim, K.H., Nakai, N. and Kim, O.J. (1981) A mineralogical study of the skarn minerals from the Shinyemi lead-zinc ore deposits, Korea. Jour. Korean Inst. Mining Geol., v.14, p.167-182. 

  18. Kim, M.S., Yun, S.H. and Koh, J.S. (2008) Petrological study on the Seolcheon tuff in the Yeongnam massif, Muju. Jour. Geol. Soc. Korea., v.44, p.199-217. 

  19. Kim, M.Y. and Shin, H.J. (1989) Chemical composition of sphalerite relating to mineralization at the Tongyoung mine, Korea.. Jour. Korean Inst. Mining Geol., v.22, p.103-115. 

  20. KMPC(Korea Mining Promotion Corporation) (1982) Report on drilling of ore deposit. v.5, p.341-448. 

  21. KMPC(Korea Mining Promotion Corporation) (1983) Report on drilling of ore deposit. v.6, p.239-277. 

  22. KMPC(Korea Mining Promotion Corporation) (1990) Ore deposits in Korea. v.12, p.153-154. 

  23. Kojima, S. and Sugaki, A. (1985) Phase relations in the central portion of the Cu-Fe-Zn-S system between 500 and 300 under hydrothermal conditions. Economic Geology, v.80, p.158-171. 

  24. KORES(Korea Resources Corporation) (2013) Bulletin of mining 2012. 551p. 

  25. Lee, C.H. and Park, H.I. (1992) Mode of occurrences and depositional conditions of Sb, Bi sulfosalt minerals from south ore deposits, Dunjeon gold mine. Jour. Korean Inst. Mining Geol., v.25, p.17-25. 

  26. Lee, C.H. and Park, H.I. (1995) Some Pb-Bi-Sb-S minerals from the Dunjeon gold mine, northern Taebaegsan mining district, Korea. Resource Geol., v.45, p.323-329. 

  27. Lee, H.K., Yoo, B.C. and Kim, S.J. (1992) Mineralogy and ore genesis of the Daebong gold-silver deposits, Chungnam, Korea. Jour. Korean Inst. Mining Geol., v.25, p.297-316. 

  28. Lee, H.K., Lee, C.H. and Song, S.H. (1996) Ore minerals and mineralization conditions of magnetite deposits in the Janggun mine, Korea. Econ. Environ. Geol, v.29, p.1-9. 

  29. Lee, M.S. (1985) Sulfur and carbon isotope studies of principal metallic deposits in the metallogenic province of the Taebaeg Mt. region, Korea. Jour. Korean Inst. Mining Geol., v.18, p.247-251. 

  30. Lim, O., Yu, J.H., Koh, S.M. and Heo, C.H. (2013) Mineralogy and chemical compositions of Dangdu Pb-Zn deposit. Econ. Environ. Geol., v.46, p.123-140. 

  31. Mariko, T. and Yang, D.Y. (1993) Magnesian skarn-type magnetite deposits of the Shinyemi mine, Korea. In Maurice Y.N. (ed.) Proceeding of the 8th IAGOD Symposium, Ottawa, Canada, p.255-269. 

  32. Mizuta, T., Shimazaki, H., Kaneda, H. and Lee, M.S. (1984) Compositional variation of sphalerites from some Au-Ag ore deposits in South Korea. In Tsusue, A., (ed.), Granite provinces and associated ore deposits in South Korea. p.127-152. 

  33. Ohmoto, H. and Rye, R.O. (1979) Isotopes of sulfur and carbon. In Barnes, H.L. (eds.), Geochemistry of Hydrothermal Ore Deposits. Jhon Wiley and Sons, p.509-567. 

  34. Park, H.I., Woo, Y.K. and Hwang, J. (1988) Polymetallic mineralizatioin in the Eunchi silver mine. Jour. Geol. Soc. Korea., v.24, p.431-449. 

  35. Park, J.W. and Lee, Y.I. (1997) Lithostratigraphic revision of the Cretaceous Muju Basin, Korea. Jour. Geol. Soc. Korea., v.33, p.65-77. 

  36. Park, J.W. and Lee, Y.I. (2000) Provenance of Cretaceous conglomerates(the Gilwangri Formation) of the Muju Basin in Mt. Jeogsang area, Korea. Jour. Geol. Soc. Korea, v.36, p.355-370. 

  37. Seal II, R.R. (2006) Sulfur isotope geochemistry of sulfide minerals. In: Vaughan, D.J. (ed.), Sulfide mineralogy and geochemistry. Reviews in Mineralogy & Geochemistry. Mineral. Soc. Am., v.61, p.633-677. 

  38. Seo, J.U., Choi, S.G., Kim, C.S., Park, J.W., Yoo, I.K. and Kim, N.H. (2007) The skarnification and Fe-Mo mineralization at lower part of western Shinyemi ore body in Taeback area. Jour. Mineral. Soc. Korea, v.20, p.35-46. 

  39. Shin, D.B. (2006) Occurrence and mineral chemistry of Pb-Ag-Bi-S system minerals in the Nakdong As-Bi deposits, South Korea. Econ. Environ. Geol., v.39, p.643-651. 

  40. Shin, D.B., Lee, C.H. and Lee, K.S. (2005) Occurrence and mineral chemistry of bismuth sulfide-tellurideselenide solid solutions (ingodite, Joseite, and unnamed phase) in the Nakdong deposit, South Korea. Neues Jahrbuch fur Mineralogie, v.181, p.293-302. 

  41. So, C.S., Yun, S.T., Choi, S.H., Kim, S.H. and Kim, M.Y. (1992) Cretaceous epithermal Au-Ag mineralization in the Muju-Yeongam district (Sulcheon mineralized area), Republic of Korea. Jour. Korean Inst. Mining Geol., v.25, p.115-131. 

  42. Ueda, A. and Krouse, H.R. (1986) Direct conversion of sulphide and sulphate minerals to $SO_2$ for isotope analyses. Geochem. J., v.20, p.209-212. 

  43. Yang, C.M. and Choi, J.B. (2010) Occurrence of the Pb-Zn skarn deposits in Gukjeon mine, Korea. Jour. Miner. Soc. Korea., v.23, p.413-428. 

  44. Yeom, T.S. (2014) Geology and ore mineralization of the Seungryung Zn deposit, Muzu, Korea. Master thesis, Kongju National University, 74p. 

  45. Yoo, B.C., Lee, H.K. and Choi, S.G. (2002) Stable isotope, Fluid Inclusion and Mineralogical Studies of the Samkwang Gold-Silver Deposits, Republic of Korea. Econ. Environ. Geol., v.35, p.299-316. 

  46. Youn, S.T. (2008) Chalcopyrite disease in sphalerite: A case of the Soowang ore deposits in Muju, Republic of Korea. Jour. Korean Earth Sci. Soc., v.29, p.551-558. 

  47. Youn, S.T. and Park, H.I. (1991) Gold and silver mineralization in the Yonghwa mine. Jour. Korean Inst. Mining Geol., v.24 p.107-129. 

  48. Youn, S.T. and Park, H.I. (1993) Gold and silver mineralization in the Weolseong mine. Jour. Korean Earth Sci. Soc., v.14, p.263-273. 

  49. Youn, S.T. and Park, H.I. (1997) Stable isotope study of gold-silver deposits in the Muju-Yongdong area. Jour. Korean Earth Sci. Soc., v.18, p.60-69. 

  50. Youn, S.T. and Park, H.I. (2004) Gold and silver mineralization of the Soowang ore deposits in Muju, Korea. Jour. Korean Earth Sci. Soc., v.25, p.484-494. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로