$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

Objectives : Sparganii Rhizoma is frequently used in traditional herbal medicine for treatment of blood stasis, amenorrhea and functional dyspepsia and has been reported to exhibit anti-oxidant, anti-proliferation and anti-angiogenesis peoperties. In this study, we investigated the cytoprotective ef...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

문제 정의

  • 그러나 아직까지 삼릉의 항산화효과 및 간세포 보호 효과에 대한 연구는 되어있지 않았다. 따라서 본 연구에서는 인간 간암 세포주 HepG2 cell을 이용하여 삼릉 물 추출물이 AA와 철에 의해 유도된 산화적 스트레스에 대해 미토콘드리아 보호효과가 있는지 그에 따른 간세포 apoptosis 저해효과를 가지는지 그 작용기전을 밝히고자 하였다.
  • 최근에는 삼릉의 진통 및 항혈전 작용32), 항종양 효능33) 등이 보고된 바 있다. 본 연구에서는 인간 간암 세포주 HepG2 cell을 이용하여 삼릉 물 추출물이 인위적으로 유도된 산화적 스트레스 in vitro 모델에서 간세포 보호 효능을 평가하고, 그 작용기전에 대해 연구하였다.
본문요약 정보가 도움이 되었나요?

참고문헌 (49)

  1. Murgia M, Giorgi C, Pinton P, Rizzuto R: Controlling metabolism and cell death: At the heart of mitochondrial calcium signalling. Journal of molecular and cellular cardiology. 2009;46(6):781-788. 

  2. Stowe DF, Camara AK: Mitochondrial reactive oxygen species production in excitable cells: Modulators of mitochondrial and cell function. Antioxidants & redox signaling. 2009;11(6):1373-1414. 

  3. Green DR, Kroemer G: The pathophysiology of mitochondrial cell death. Science. 2004;305(5684):626-629. 

  4. Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest. 2004;114:147-52. 

  5. Cocco T, Di Paola M, Papa S, Lorusso M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free radic Biol Med. 1999;27:51-9. 

  6. Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P. Arachidonic acid caused cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alha apoptotic signaling. J Biol Chem. 2001;276:12035-40. 

  7. Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol. 2001;33(10):940-959 

  8. Swanson CA. Iron intake and regulation: implications for iron deficiency and iron overload. Alcohol. 2003;30(2):99-102 

  9. McLaren CE, Gordeuk VR, Looker AC, Hasselblad V, Edwards CQ, Griffen LM, Kushner JP, Brittenham GM, Prevalence of heterozygotes for hemochromatosis in the white population of the United States. Blood. 1995;86:2021-7. 

  10. Muralikrishna Adibhatla R, Hatcher JF. Phospholipase A2, reactive oxygen species, and lipid peroxidation in cerevral ischemia. Free Radic Biol Med. 2006;40:376-87. 

  11. Claria, J. : Regulation of cell proliferation and apoptosis by bioactive lipid mediators. Recent Pat. Anticancer Drug Discov. 2006;1:369. 

  12. Nakanishi, M. and Rosenberg, D. W. : Roles of cPLA2a and arachidonic acid in cancer. Biochim. Biophys. Acta. 2006;1761:1335. 

  13. Scorrano, L., Penzo, D., Petronilli, V., Pagano, F. and Bernardi, P. : Mitochondria are direct targets of the lipoxygenase inhibitor MK886. A strategy for cell killing by combined treatment with MK886 and cyclooxygenase inhibitors. J. Biol. Chem. 2001; 276:12035. 

  14. Shin SM, Kim SG. Inhibition of arachidonic acid and iron-induced mitochondrial dysfunction and apoptosis by oltipraz and nove 1,2-dithiole-3thione congeners. Mol Pharmacol 2009;75:242-53. 

  15. Jang WD. Compound of Sparganii Rhizoma. Journal of chinese medicine. 1995;20(8):486-487. 

  16. Kim JG, Kang YM, Eum GS, Ko YM, Kim TY. Antioxidative activity and antimicrobial activity of extracts from medicinal plants. Journal of agriculture & Life sciences. 2003;37(4): 69-75. 

  17. Lee BC, Kim JH, Sim GS, Zhang YH, Pyo HB. The inhibitory effects of the Sparganii Rhizoma on melanogenesis. J. Soc. Cosmet. Scientists. 2005;31(4):305-310. 

  18. Wood A, Azzout-Marniche D, Foretz M, Stein SC, Lemarchand P, Ferre P, Foufelle F, Carling D: Characterization of the role of AMP-activated protein kinase in the regulation of glucose-activated gene expression using constiutively active and dominant negative forms of the kinase. Mol Cell Biol. 2000;20:6704-6711. 

  19. Foretz M, Carling D, Guichard C, Ferre P, Foufelle F: AMP-activated protein kinase inhibits the glucose-activated expression of fatty acid synthase gene in rat hepatocytes. J Biol Chem 1988;273:14767-1771 

  20. Assifi MM, Suchankova G, Constant Sm Prenki M, Saha AK, Ruderman NB: AMP-activated protein kinase and coordination of hepatic fatty acid metabolism of starved/carbohydrate-refed rats. Am j Physiol Endocrinol Metab. 2005;289: E794-E800. 

  21. Das S, Wong R, Rajapakes N, Murphy E, Steenbergen C. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res. 2008;103:983-91. 

  22. Grimes CA, jope RS. The multifaceted roles of glycogen synthase kinase 3 beta in cellular signaling. Prog Neurobiol. 2001;65:391-426. 

  23. Kockeritz L, Doble B, Patel S, Woodgett JR. Glycogen synthase kinase-3-an overview of an over-achieving protein kinase. Curr Drug Targets. 2006;7:1377-88. 

  24. Tong H, Imahashi K, Steenbergen C, Murphy E. Posphrylation of glycogen synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res. 2002;90:377-9. 

  25. Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMPK-mediated GSK3β inhibition downstream of poly(ADP-ribose)polymerase-LKB1 pathway. Mol Pharmacol. 2009;76:884-95. 

  26. Henderson LM, Chappel JB. Article NADPH oxidase of neutrophils. Biochim Biophys Acta. 1996;1273: 87-107. 

  27. Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW. Cytosolic NADP+-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med. 2002;32: 1185-1196. 

  28. Galaris, D., Pantopoulos, K. Oxidative stress and iron homeostasis: mechanistic and health aspects. Crit Rev Clin Lab Sci. 2008;45(1):1-23 

  29. Choi SH, Kim YW, Kim SG. AMPK-mediated GSK-3beta inhibition by isoliquiritigenine contributes to protecting mitochondria against iron-catalyzed oxidative stress. Biochem Pharmacol. 2010;79(9):1352-62. 

  30. Korea professors of Herbal medicine. Herbal medicine. Youngrimsa korea. 1991;418-9. 

  31. Shin SY, Doh SH, Shin KH. Chemical constituents of the Rhizomes of Sparganium stoloniferum. Yakhakhoeji. 2000;44(4): 334-339. 

  32. Huh SJ, Lee GS, Song BK. Study on the analgesic and anticoagulative effects of Sparganii rhizoma aqua acupuncture. The society of korean medicine obstetrics and gynecology. 2000;8:98. 

  33. Shin SJ, Lee JH. Antitumor effects of SKT (Skullcap - Knope sedge - Trametes) mixture extract. Korea journal of Pharmacogn. 2004;35(4):325. 

  34. Ashkenazi A, Dixit VM. Death receptors : signaling and modulation. Science. 1998;281(5381): 1305-8. 

  35. Cryns V, Yuan J. Proteases to die for. Genes Dev. 1998;12(11):1551-70. 

  36. Tewari M, Quan LT, O'Rourke K, Desnoyers S, Zeng Z, Beidler DR, et al. Yama/CPP32 beta, a mammalian homolog of CED-3, is a CrmA-inhibitable protease that cleaves the death substrate poly(ADP-ribose) polymerase. Cell. 1995;81(5):801-809. 

  37. Wang ZQ, Stingl L, Morrison C, Jantsch M, Los M, Schulze-Osthoff K, Wagner EF. PARP is important for genomic stability but dispensable in apoptosis. Genes & Dev. 1997;11(18):2347-2358. 

  38. Kang YK, EA Lee, HR Park. Neuroprotective effect according to reactive oxugen species scavenging activity from extracts of cudrania tricuspidata leaves. Korean J Food cookery Sci. 2012;28(6):821-8. 

  39. Shindo, Y., Witt, E., Han, D., Epstein, W., Packer, L. Enzymic and non-enzymic antioxidants in epidermis and dermis of human skin. J Invest Dermatol. 1944;102(1):112-128. 

  40. Yeom, J.B., Han, J. Mitochondrial Physiology. Korean Society of Medical Biochemistry and Molecular Biology. 2008;15(1):25-33. 

  41. Cocco, T., DiPaola, M., Papa, S., Lorusso, M. Arachidonic acid interaction with the mitochondrial electron transport chain promotes reactive oxygen species generation. Free Radic Biol Med. 1999;27(1-2):51-59. 

  42. Lan F, Cacicedo CJM, Ruderman N, Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, and activity of LKB1. Possible role in AMP-activated protein kinase activation. J Biol Chem. 2008;283:27628-27635. 

  43. Towler, M.C., Hardie, D.G. AMP-activated protein kinase in metabolic control and insulin signaling. Circ Res. 2007;100(3):328-341. 

  44. Carling, D. The AMP-activated protein kinase cascade—a unifying system for energy control. Trends Biochem Sci. 2004;29(1):18-24. 

  45. Hawley, S.A., Davison, M., Woods, A., Davies, S.P., Beri, R.K., Caring, D., Hardie, D.G. Haracterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem. 1996;271(44):27879-27887. 

  46. Shaw RJ, Kosmatka M, Bardeesy N, Hurley RL, Witters LA, DePinho RA, Cantley LC. The tumor suppressor LKB1 kinase directly activates AMP-actkvated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci USA. 2000;101:3329-35. 

  47. Lan F, Cacicedo JM, Ruderman N, Ido Y: SIRT1 modulation of the acetylation status, cytosolic localization, andactivity of LKB1. Possible role in AMP-activted protein kinase activation. J Biol Chem. 2008;283:27628-27635. 

  48. Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ. Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535-49. 

  49. Shin SM, Cho IJ, Kim SG. Resveratrol protects mitochondria against oxidative stress through AMPK-mediated GSK3β inhibition downstream of poly(ADP-ribose) polymerase-LKB1 pathway. Mol Pharmacol. 2009;76:884-95. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로