최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Korean chemical engineering research = 화학공학, v.53 no.3, 2015년, pp.372 - 381
최동혁 (아주대학교 에너지시스템학과, 화학공학과) , 박정은 (아주대학교 에너지시스템학과, 화학공학과) , 박은덕 (아주대학교 에너지시스템학과, 화학공학과)
The effect of preparation method on the catalytic activities of the
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
에틸렌글리콜로부터 수소를 생성하는 반응은 반응 온도의 범위에 따라 어떻게 나뉘나요? | 에틸렌글리콜로부터 수소를 생성하는 반응들은 반응온도의 범위에 따라 낮은 온도의 액상에서 진행되는 수상 개질반응과 높은 온도의 기상에서 진행되는 수증기 개질반응으로 구분할 수 있다. 수상 개질 반응은 비교적 낮은 온도(498~538 K)와 고압조건(29~65 bar)에서 진행되므로 높은 순도의 수소를 제조할 수 있다[6-8]. | |
에틸렌글리콜의 수증기 개질반응에서 Ni 기반의 촉매를 사용할 때 문제점은? | 또한메탄[11], 바이오에탄올[12], 초산[13], 에탄올[14-17], 글리세롤[18], 바이오오일[19]의수증기개질반응에서도 C-C 결합을 효과적으로 끊어 내어[20] 높은 활성을 보이는 것으로 알려져 있다. 그러나 Ni 기반 촉매는 소결과 탄소 침적으로 인하여 비활성화되는 문제점을 가지고 있다 [21-24]. | |
수소 생성 반응 중 수증기 개질반응의 장점은 무엇인가요? | 하지만 상대적으로 수소 생성량이 적고, 촉매의 비활성화를 억제하기 위해서는 반응물의 농도가 낮아야 하는 단점을 가지고 있다[8]. 반면에, 수증기 개질반응은 생성물에서의 높은 수소 농도와 낮은 가격의 촉매를 사용하는 장점을 가지고 있다. 에틸렌글리콜의 수증기 개질반응은 다음과 같이 나타낼 수 있다[9]. |
Vagia, E. C. and Lemonidou, A. A., "Thermodynamic Analysis of Hydrogen Production Via Autothermal Steam Reforming of Selected Components of Aqueous Bio-oil Fraction," Int. J. Hydrog. Energy, 33, 2489-2500(2008).
Ji, N., Zhang, T., Zheng, M., Wang, A., Wang, H., Wang, X. and Chen, J. G., "Direct Catalytic Conversion of Cellulose into Ethylene Glycol Using Nickel-Promoted Tungsten Carbide Catalysts," Angew. Chem-Int. Edit., 47, 8510-8513(2008).
You, S. J., Baek, I. G., Kim, Y. T., Jeong, K.-E., Chae, H.-J., Kim, T.-W., Kim, C.-U., Jeong, S.-Y., Kim, T. J., Chung, Y.-M., Oh, S.-H. and Park, E. D., "Direct Conversion of Cellulose into Polyols or $H_2$ over Pt/Na(H)-ZSM-5," Korean J. Chem. Eng., 28, 744-750(2011).
Yue, H., Zhao, Y., Ma, X. and Gong, J., "Ethylene Glycol: Properties, Synthesis, and Applications," Chem. Soc. Rev., 41, 4218-4244(2012).
Davda, R. R., Shabaker, J. W., Huber, G. W., Cortright, R. D. and Dumesic, J. A., "Aqueous-phase Reforming of Ethylene Glycol on Silica-supported Metal Catalysts," Appl. Catal. B: Environ., 43, 13-26(2003).
Shabaker, J. W., Davda, R. R., Huber, G. W., Cortright, R. D. and Dumesic, J. A., "Aqueous-phase Reforming of Methanol and Ethylene Glycol over Alumina-supported Platinum Catalysts," J. Catal., 215, 344-352(2003).
Huber, G. W., Shabaker, J. W., Evans, S. T. and Dumesic, J. A., "Aqueous-phase Reforming of Ethylene Glycol over Supported Pt and Pd Bimetallic Catalysts," Appl. Catal. B:Environ., 62, 226-235(2006).
Wang, N., Perret, N. and Foster, A., "Sustainable Hydrogen Production for Fuel Cells by Steam Reforming of Ethylene Glycol: A Consideration of Reaction Thermodynamics," Int. J. Hydrog. Energy, 36, 5932-5940(2011).
Vlieger, D. J. M., Chakinala, A. G., Lefferts, L., Kersten, S. R. A., Seshan, K. and Brilman, D. W. F., "Hydrogen from Ethylene Glycol by Supercritical Water Reforming Using Noble and Base Metal Catalysts," Appl. Catal. B:Environ., 111-112, 536-544(2012).
Jung, Y. S., Yoon, W. L., Rhee, Y. W. and Seo, Y. S., "The Surfactant-assisted Ni- $Al_2O_3$ Catalyst Prepared by a Homogeneous Precipitation Method for $CH_4$ Steam Reforming," Int. J. Hydrog. Energy, 37, 9340-9350(2012).
Marino, F., Boveri, M., Baronetti, G. and Laborde, M., "Hydrogen Production from Steam Reforming of Bioethanol Using Cu/Ni/ K/g- $Al_2O_3$ Catalysts Effect Ni," Int. J. Hydrog. Energy, 26, 665-668(2001).
Basagiannis, A. C. and Verykios, X. E., "Reforming Reactions of Acetic Acid on Nickel Catalysts over a Wide Temperature Range," Appl. Catal. A: Gen., 308, 182-193(2006).
Biswas, P. and Kunzru, D., "Steam Reforming of Ethanol for Production of Hydrogen over Ni/ $CeO_2$ - $ZrO_2$ Catalysts: Effect of Support and Metal Loading," Int. J. Hydrog. Energy, 32, 969-980(2007).
Zhang, L., Liu, J., Li. W., Guo, C. and Zhang, J., "Ethanol Steam Reforming over Ni-Cu/ $Al_2O_3$ - $M_yO_z$ (MSi, La, Mg, and Zn) Catalysts," J. Nat. Gas Chem., 18, 55-65(2009).
Haryanto, A., Fernando, S., Murali, N. and Adhikari, S., "Current Status of Hydrogen Production Techniques by Steam Reforming of Ethanol: A Review," Energy Fuels, 19, 2098-2106(2005).
Garbarino, G., Lagazzo, A., Riani, P. and Busca, G., "Steam Reforming of Ethanol-phenol Mixture on Ni/ $Al_2O_3$ : Effect of Ni Loading and Sulphur Deactivation," Appl. Catal. B: Environ., 129, 460-472(2013).
Nichele, V., Signoretto, M., Menegazzo, F., Gallo, A., Santo, V. D., Cruciani, G. and Cerrato, G., "Glycerol Steam Reforming for Hydrogen Production: Design of Ni Supported Catalysts," Appl. Catal. B: Environ., 111-112, 225-232(2012).
Goyal, N., Pant, K. K. and Gupta, R., "Hydrogen Production by Steam Reforming of Model Bio-oil Using Structured Ni/ $Al_2O_3$ Catalysts," Int. J. Hydrog. Energy, 38, 921-933(2013).
Piscina, P. R. and Homs, N., "Use of Biofuels to Produce Hydrogen (reformation processes)," Chem. Soc. Rev., 37, 2459-2467(2008).
Kim, J. H., Suh, D. J., Park, T. J. and Kim, K. L., "Effect of Metal Particle Size on Coking During $CO_2$ Reforming of $CH_4$ over Ni-alumina Aerogel Catalysts," Appl. Catal. A: Gen., 197, 191-200(2000).
Li, G., Hu, L. and Hill, J., "Comparison of Reducibility and Stability of Alumina-supported Ni Catalysts Prepared by Impregnation and co-precipitation," Appl. Catal. A:Gen., 301, 16-24(2006).
Achouri, I. E., Abatzoglou, N., Fauteux-Lefebvre, C. and Braidy, N., "Diesel Steam Reforming: Comparison of Two Nickel Aluminate Catalysts Prepared by Wet-impregnation and co-precipitation," Catal. Today, 207, 13-20(2013).
Ibrahim, H. H., Kumar, P. and Idem, R., "Reforming of Isooctane over Ni- $Al_2O_3$ Catalysts for Hydrogen Production: Effects of Catalyst Preparation Method and Nickel Loading," Energy Fuels, 21, 570-580(2007).
Jung, Y. S., Yoon, W. L., Seo, Y. S. and Rhee, Y. W., "The Effect of Precipitants on Ni- $Al_2O_3$ Catalysts Prepared by a co-precipitation Method for Internal Reforming in Molten Carbonate Fuel Cells," Catal. Commun., 26, 103-111(2012).
Sing, S. K. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., "Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity," Pure Appl. Chem., 57, 603-619(1985).
Mattos, L. V., Jacobs, G., Davis, B. H. and Noronha, F. B., "Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation," Chem. Rev., 112, 4093-4123(2012).
Che, Y. and Ren, J., "Conversion of Methane and Carbon Dioxide into Synthesis Gas over Alumina-supported Nickel Catalysts. Effect of Ni- $Al_2O_3$ Interactions," Catal. Lett., 29, 39-48(1994).
Eser, S., Venkataraman, R. and Altin, O., "Utility of Temperature Programmed Oxidation for Characterization of Carbonaceous Deposits from Heated Jet Fuel," Ind. Eng. Chem. Res., 45, 8956-8962(2006).
Bimbela, F., Chen, D., Ruiz, J., Garcia, L. and Arauzo, J., "Ni/Al Coprecipitated Catalysts Modified with Magnesium and Copper for the Catalytic Steam Reforming of Model Compounds from Biomass Pyrolysis Liquids" , Appl. Catal. B:Environ., 1-12, 119-120(2012).
Djaidja, A., Libs, S., Kiennemann, A. and Barama, A., "Characterization and Activity in Dry Reforming of Methane on NiMg/ Al and Ni/MgO Catalysts," Catal. Today, 113, 194-200(2006).
Lisboa, J. S., Santos, D. C. R. M., Passos, F. B. and Noronha, F. B., "Influence of the Addition of Promoters to Steam Reforming Catalysts," Catal. Today, 101, 15-21(2005).
Trimm, D. L., "Catalysts form the Control of Coking During Steam Reforming," Catal. Today, 49, 3-10(1999).
Tsyganok, A. I., Tsunoda, T., Hamakawa, S., Suzuki, K., Takehira, K. and Hayakawa, T., "Dry Reforming of Methane over Catalysts Derived from Nickel-containing Mg-Al Layered Double Hydroxides," J. Catal., 213, 191-203(2003).
Koo, K. Y., Roh, H. S., Seo, Y. T., Seo, D. J., Yoon, W. L. and Park, S. B., "Coke study on MgO-promoted Ni/ $Al_2O_3$ Catalyst in Combined $H_2O$ and $CO_2$ Reforming of Methane for Gas to Liquid (GTL) Process," Appl. Catal. A:Gen., 340, 183-190(2008).
Vagia, E. C. and Lemonidou, A. A., "Thermodynamic Analysis of Hydrogen Production Via Steam Reforming of Selected Components of Aqueous Bio-oil Fraction," Int. J. Hydrog. Energy, 32, 212-223(2007).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.