$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Development of a Multiple SMPS System Controlling Variable Load Based on Wireless Network 원문보기

Journal of electrical engineering & technology, v.10 no.3, 2015년, pp.1221 - 1226  

Ko, Junho (Dept. of Computer Science and Engineering, Korea University of Technology and Education) ,  Park, Chul-Won (Dept. of Electrical Engineering, Gangneung-Wonju National University) ,  Kim, Yoon Sang (School of Computer Science and Engineering, Korea University of Technology and Education)

Abstract AI-Helper 아이콘AI-Helper

This paper proposes a multiple switch mode power supply (SMPS) system based on the wireless network which controls variable load. The system enables power supply of up to 600W using 200W SMPS as a unit module and provides a controlling function of output power based on variable load and a monitoring...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • The remote control part of the proposed system is combined with a number of multiple SMPSs. But, the experiment was performed using a set of multiple SMPS for simplicity: the experiment was conducted in the test environment where LED for load, three single SMPSs, PFC for power regulation, interface board for control and communication, server for communi- cation and data saving, and tablet (Android platform) for remote control were set up as shown in Fig. 10.
  • The level of performance (efficiency and power factor) of the single SMPS was low under the load less than 100% (50%, 20%, 10%), which highlighted the importance of the system’s output power control based on variable load. From the measurement test results for output power under the load (variation of dimming duty in LED), it was confirmed that the proposed system could enable controlling the output power proportional to the variable load, which efficiency was objectively assessed by the national standardized test.
  • The major function of the application divides into the multiple SMPS monitoring and SMPS control. In order to simulate such functions, authors established wireless network environment composed of 2 SMPS, through which voltage, current, and temperature, and control status of the multiple SMPS were monitored.
  • The proposed system allowed an efficient power supply up to 600W by integrating 200W unit-module-type SMPS (called single SMPS), our previous work, and stable power supply by providing output power control based on variable load and wireless network-based monitoring. The efficiency with respect to various output loads was examined and the performance was also reviewed by the measurement test for output power, and finally received the official certification by Korea Testing Certification.

대상 데이터

  • The experiment was conducted under the conditions of 600.52W of loaded output power, 21-25℃ Ta (ambient temperature) and 20-40% RH (relative humidity). Each category was measured after preheating each module with electric power loader for ten minutes under full load condition.

이론/모형

  • The standardized test was conducted under the supervision of Korea Testing Certification for objective verification. The experiment was conducted under the conditions of 600.
본문요약 정보가 도움이 되었나요?

참고문헌 (12)

  1. F. Kurokawa, and H. Matsuo, “A new Multiple- Output Hybrid Power Supply,” IEEE Transactions on Power Electronics, vol.3, no.4, pp.412-419, 1988. 

  2. Seung-Min Shin, Junh-Hoon Ahn and Byoung-Kuk Lee, “Maximum Efficiency Operation of Three-Level T-type Inverter for Low-Voltage and Low-Power Home Appliances,” Journal of Electrical Engineering & Technology, Vol. 10, No. 2, pp. 586-594, 2015. 

  3. B. S. Mohammed, R. Iibrahim, N. Perumal and K. S. Rama Rao, “Power Flow Control of a Multi-bus/ Three-feeder Distribution System Using Generalized Unified Power Quality Conditioner,” Journal of Electrical Engineering & Technology, Vol. 10. No. 1, pp. 8-17, 2015. 

  4. Pui-Kei Leong, Chun-Hung Yang, Chi-Wai Leng and Chien-Hung Tsai, “Design and implementation of sigma-delta DPWM controller for switching converter,” Circuits and System. ISCAS. IEEE International Symposium on, pp. 3074-3077, 2009. 

  5. H. H. Ahmad and B. Bakkaloglu, “A 300mA 14mVripple digitally controlled buck converter using frequency domain ΔΣ ADC and hybrid PWM generator,” International Solid-State Circuits Conference. ISSCC. IEEE International Conference on, pp.202-203, 2010. 

  6. Brad Bryant and Marian K. Kazimierczuk,“Modeling the Closed-Current Loop of PWM Boost DC-DC Converters Operating in CCM With Peak Current- Mode Control,” IEEE Trans. Circuits and systems, vol. 53, pp. 2404-2412, 2005. 

  7. Reza Ahmadi, Darren Paschedag and Mehdi Ferdowsi, “Closed-loop Input and Output Impedances of DCDC Switching Converters operating in Voltage and Current Mode Control,” Industrial Electronics Society. IECON. IEEE conference on, pp. 2311-2316, 2010. 

  8. Yanxia Gao, Shaofeng Zhang, Yanping Xu and Shuibao Gao, “Analysis and comparison of three implementation methodologies for high-resolution DPWM,” IEEE International Conference on Power Electronics Systems and Applications, pp.1-7, 2009. 

  9. Yanxia Gao, Shuibao Guo, Yanping Xu, Shi Xuefang Lin and B. Allard, “FPGA-Based DPWM for Digitally Controlled High-Frequency DC-DC SMPS,” Power Electronics Systems and Applications. PESA. IEEE Conference on, pp.1-7, 2008. 

  10. Sangduk Yu, Youngchan Choi, Kichang Jang Jungsoo Choi, Jungeui Park, Wooju Jeong and Joongho Choi, “Design of Digitally-Controlled Synchronous Buck Converter,” IEEK 2008 SOC conference, pp.17-20, 2008. 

  11. Yoon Sang Kim and Junho Ko, “Development of a Sensor Network-based SMPS System – a Smart LED Monitoring Application based on Wireless Sensor Network,” International Journal of Distributed Sensor Networks, volume 2014, Article ID 189672, 12 pages, 2014. 

  12. http://www.gain-tech.com 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로