$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

점탄성 고분자 액체의 대진폭 전단유동거동 예측을 위한 간단한 해석방법
A Simple Analysis Method to Predict the Large Amplitude Oscillatory Shear (LAOS) Flow Behavior of Viscoelastic Polymer Liquids

한국섬유공학회지 = Textile science and engineering, v.52 no.3, 2015년, pp.159 - 166  

장갑식 (FITI시험연구원 신뢰성평가팀) ,  안혜진 (부산대학교 공과대학 유기소재시스템공학과) ,  송기원 (부산대학교 공과대학 유기소재시스템공학과)

Abstract AI-Helper 아이콘AI-Helper

Using an Advanced Rheometric Expansion System (ARES), the dynamic viscoelastic behavior of aqueous poly(ethylene oxide) (PEO) solutions with various molecular weights and different concentrations has been investigated in large amplitude oscillatory shear (LAOS) flow fields over a wide range of strai...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • 5, 1, 5, and 10 rad/s. Each measurement was performed by placing a film of silicone oil at the sample free surface to reduce an evaporation effect during the test.
  • The solution was taken to be completely homogeneous when the steady shear viscosity varies less than 1% over a threeday period. Further periodic monitoring of the solutions was performed to check for degradation. It was observed that the solutions remain stable for approximately 4 weeks and hence all experiments were conducted during this period.
  • Using an ARES, the dynamic viscoelastic behavior of aqueous PEO solutions with various molecular weights and different concentrations has been investigated in LAOS flow fields over a wide range of strain amplitudes. In this study, a new analysis method including a simple empirical model was proposed to predict the LAOS flow behavior of concentrated polymer systems in strain-sweep experiments. It was found that a new analysis method is very useful to estimate the LAOS flow behavior of viscoelastic polymer solutions with various molecular weights and different concentrations and that an empirical model suggested in this work is significant in 95% confidence level, and consequently predicts exactly the nonlinear viscoelastic behavior of polymeric liquids.

대상 데이터

  • The polymers selected in this study were poly(ethylene oxide) (PEO) supplied from the Sigma-Aldrich Chemical Co. (USA). Distilled water was used as a solvent for PEO to prepare the sample polymer solutions with different concentrations.

이론/모형

  • The master curves could be obtained by plotting these data against the product of angular frequency by characteristic time of the polymer solutions. The characteristic times were determined by the following equation derived from the FENE(finitely extensible nonlinear elastic) dumbbell model [38].
  • derived from equations (1) and (2) express the slopes of storage modulus and dynamic viscosity, respectively, in a nonlinear region. Therefore, the values of nE and nV determined from the empirical models proposed in this study can be used as the elastic and viscous nonlinear behavior indices representing the degree of nonlinear viscoelasticity. If the degree of nonlinearity is increased, the nonlinear behavior index will also be increased.
본문요약 정보가 도움이 되었나요?

참고문헌 (48)

  1. K. S. Cho, K. Hyun, K. H. Ahn, and S. J. Lee, "A Geometrical Interpretation of Large Amplitude Oscillatory Shear Response", J. Rheol., 2005, 49, 747-758. 

  2. S. Hofl, F. Kremer, H. W. Spiess, M. Wilhelm, and S. Kahle, "Effect of Large Amplitude Oscillatory Shear (LAOS) on the Dielectric Response of 1,4-cis-Polyisoprene", Polymer, 2006, 47, 7282-7288. 

  3. J. A. Yosick, A. J. Giacomin, and P. Moldenaers, "A Kinetic Network Model for Nonlinear Flow Behavior of Molten Plastics in both Shear and Extension", J. Non-Newt. Fluid Mech., 1997, 70, 103-123. 

  4. W. Philippoff, "Further Dynamic Investigation on Polymers", J. Appl. Phys., 1954, 25, 1102-1107. 

  5. K. W. Song, G. S. Chang, C. B. Kim, J. O. Lee, and J. S. Paik, "Rheological Characterization of Aqueous Poly(Ethylene Oxide) Solutions (I): Limits of Linear Viscoelastic Response and Nonlinear Behavior with Large Amplitude Oscillatory Shear Deformation", J. Kor. Fiber Soc., 1996, 33, 1083-1093. 

  6. K. W. Song and G. S. Chang, "Nonlinear Viscoelastic Behavior of Concentrated Polyisobutylene Solutions in Large Amplitude Oscillatory Shear Deformation", Kor. J. Rheol., 1998, 10, 173-183. 

  7. K. Hyun, J. G. Nam, M. Wilhelm, K. H. Ahn, and S. J. Lee, "Large Amplitude Oscillatory Shear Behavior of PEO-PPOPEO Triblock Copolymer Solutions", Rheol. Acta, 2006, 45, 239-249. 

  8. K. S. Cho, K. W. Song, and G. S. Chang, "Scaling Relations in Nonlinear Viscoelastic Behavior of Aqueous PEO Solutions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2010, 54, 27-63. 

  9. R. S. Jeyaseelan, A. J. Giacomin, and J. G. Oakley, "Simplification of Network Theory for Polymer Melts in Nonlinear Oscillatory Shear", AIChE J., 1993, 39, 846-854. 

  10. R. S. Jeyaseelan and A. J. Giacomin, "Structural Network Theory for a Filled Polymer Melt in Large Amplitude Oscillatory Shear", Polymer Gels and Networks, 1995, 3, 117-133. 

  11. F. Yziquel, P. J. Carreau, and P. A. Tanguy, "Non-linear Viscoelastic Behavior of Fumed Silica Suspensions", Rheol. Acta, 1999, 38, 14-25. 

  12. L. Ma, J. Xu, P. A. Coulombe, and D. Wirtz, "Keratin Filament Suspensions Show Unique Micromechanical Properties", J. Biol. Chem., 1999, 274, 19145-19151. 

  13. T. Narumi, H. See, A. Suzuki, and T. Hasegawa, "Response of Concentrated Suspensions under Large Amplitude Oscillatory Shear Flow", J. Rheol., 2005, 49, 71-85. 

  14. W. Yu, M. Bousmina, and C. Zhou, "Note on Morphology Determination in Emulsions via Rheology", J. Non-Newt. Fluid Mech., 2006, 133, 57-62. 

  15. H. J. Ahn and K. W. Song, "Nonlinear Viscoelastic Behaviors of Different Types of O/W Emulsion-Based Mayonnaises in Several Shear Flow Fields", Ann. Trans. Nordic Rheol. Soc., 2011, 19, 13-17. 

  16. N. Phan-Thien, M. Newberry, and R. I. Tanner, "Non-linear Oscillatory Flow of a Soft Solid-like Viscoelastic Materials", J. Non-Newt. Fluid Mech., 2000, 92, 67-80. 

  17. C. Daniel, I. W. Hamley, M. Wilhelm, and W. Mingvanish, "Non-linear Rheology of a Face-Centered Cubic Phase in a Diblock Copolymer Gel", Rheol. Acta, 2001, 40, 39-48. 

  18. C. Michon, C. Chapuis, V. Langendorff, P. Boulenguer, and G. Cuvelier, "Strain-Hardening Properties of Physical Weak Gels of Biopolymers", Food Hydrocolloids, 2004, 18, 999-1005. 

  19. C. Storm, J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey, "Nonlinear Elasticity in Biological Gels", Nature, 2005, 435, 191-194. 

  20. T. S. K. Ng, G. H. McKinley, and R. H. Ewoldt, "Large Amplitude Oscillatory Shear Flow of Gluten Dough: A Model Power-Law Gel", J. Rheol., 2011, 55, 627-654. 

  21. K. W. Song, H. Y. Kuk, and G. S. Chang, "Rheology of Concentrated Xanthan Gum Solutions: Oscillatory Shear Flow Behavior", Kor.-Aust. Rheol. J., 2006, 18, 67-81. 

  22. E. K. Park and K. W. Song, "Rheological Evaluation of Petroleum Jelly as a Base Material in Ointment and Cream Formulations with Respect to Rubbing onto the Human Body", Kor.-Aust. Rheol. J., 2010, 22, 279-289. 

  23. M. Wilhelm, P. Reinheimer, and M. Ortseifer, "High Sensitivity Fourier-Transform Rheology", Rheol. Acta, 1999, 38, 349-356. 

  24. M. Wilhelm, "Fourier-Transform Rheology", Macromol. Mat. Eng., 2002, 287, 83-105. 

  25. G. S. Chang, Ph. D. Thesis, Pusan National University, Busan, Korea, 2010. 

  26. I. F. MacDonald, B. D. Marsh, and E. Ashare, "Rheological Behavior for Large Amplitude Oscillatory Motion", Chem. Eng. Sci., 1969, 24, 1615-1625. 

  27. W. Philippoff, "Vibrational Measurements with Large Amplitudes", Trans. Soc. Rheol., 1966, 10, 317-334. 

  28. H. C. Yen and L. V. McIntire, "Finite Amplitude Dynamic Motion of Viscoelastic Materials", Trans. Soc. Rheol., 1972, 16, 711-726. 

  29. J. M. Dealy and K. F. Wissbrun, "Melt Rheology and Its Role in Plastics Processing: Theory and Applications", Van Nostrand Reinhold, New York, 1990. 

  30. R. I. Tanner, "Engineering Rheology", 2nd Ed., Oxford University Press, New York, 2000. 

  31. K. W. Song, T. H. Kim, G. S. Chang, S. K. An, J. O. Lee, and C. H. Lee, "Steady Shear Flow Properties of Aqueous Poly (Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 193-203. 

  32. K. W. Song, J. W. Bae, G. S. Chang, D. H. Noh, Y. H. Park, and C. H. Lee, "Dynamic Viscoelastic Properties of Aqueous Poly(Ethylene Oxide) Solutions", J. Kor. Pharm. Sci., 1999, 29, 295-307. 

  33. F. E. Bailey, Jr. and J. V. Koleske, "Poly(Ethylene Oxide)", Academic Press, New York, 1976. 

  34. K. R. Shah, S. A. Chaudhary, and T. A. Mehta, "Polyox (Polyethylene Oxide) Multifunctional Polymer in Novel Drug Delivery System", Int. J. Pharm. Sci. Drug Res., 2014, 6, 95-101. 

  35. S. Bekiranov, R. Bruinsma, and P. Pincus, "Solution Behavior of Poly(Ethylene Oxide) in Water as a Function of Temperature and Pressure", Phys. Rev. E., 1997, 55, 577-585. 

  36. S. Kawaguchi, G. Imai, J. Suzuki, A. Miyahara, T. Kitano, and K. Ito, "Aqueous Solution Properties of Oligo- and Poly (Ethylene Oxide) by Static Light Scattering and Intrinsic Viscosity", Polymer, 1997, 38, 2885-2891. 

  37. P. N. Georgelos and J. M. Torkelson, "The Role of Solution Structure in Apparent Thickening Behavior of Dilute PEO/Water Systems", J. Non-Newt. Fluid Mech., 1988, 27, 191-204. 

  38. R. B. Bird, C. F. Curtiss, R. C. Armstrong, and O. Hassager, "Dynamics of Polymeric Liquids", 2nd Ed., Vol. 2, John Wiley & Sons, New York, 1987. 

  39. L. H. Gross and B. Maxwell, "The Limit of Linear Viscoelastic Response in Polymer Melts as Measured in the Maxwell Orthogonal Rheometer", Trans. Soc. Rheol., 1972, 16, 577-601. 

  40. R. I. Tanner, "Network Rupture and the Flow of Concentrated Polymer Solutions", AIChE J., 1969, 15, 177-183. 

  41. R. B. Bird and P. J. Carreau, "A Nonlinear Viscoelastic Model for Polymer Solutions and Melts", Chem. Eng. Sci., 1968, 23, 427-434. 

  42. I. F. Macdonald, "Large Amplitude Oscillatory Shear Flow of Viscoelastic Materials", Rheol. Acta, 1975, 14, 801-811. 

  43. G. Astarita and R. J. J. Jongschaap, "The Maximum Amplitude of Strain for the Validity of Linear Viscoelasticity", J. Non-Newt. Fluid Mech., 1977/1978, 3, 281-287. 

  44. B. D. Coleman and W. Noll, "Foundations of Linear Viscoelasticity", Rev. Modern Phys., 1961, 33, 239-248. 

  45. R. J. J. Jongschaap, K. H. Knapper, and J. S. Lopulissa, "On the Limit of Linear Viscoelastic Response in the Flow between Eccentric Rotating Disks", Polym. Eng. Sci., 1978, 18, 788-792. 

  46. T. T. Tee and J. M. Dealy, "Nonlinear Viscoelasticity of Polymer Melts", Trans. Soc. Rheol., 1975, 19, 595-615. 

  47. J. L. Leblanc, "Investigating the Nonlinear Viscoelastic Behavior of Rubber Materials through Fourier Transform Rheometry", J. Appl. Polym. Sci., 2005, 95, 90-106. 

  48. J. L. Leblanc, "Non-linear Viscoelastic Characterization of Natural Rubber Gum through Large Amplitude Harmonic Experiments", J. Rubber Res., 2007, 10, 63-88. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로