$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 변형된 키토산 알지네이트 겔 poly (L-Lactic-co-ε-Caprolactone) 지지체의 연골 조직 재생 평가
Chitosan-alginate Gel Modified Poly (L-Lactic-co-ε-Caprolactone) (PLCL) as a Scaffold for Cartilage Tissue Engineering 원문보기

Journal of veterinary clinics = 한국임상수의학회지, v.32 no.3, 2015년, pp.224 - 230  

(충북대학교 수의과대학 수의외과학 교실) ,  황야원 (충북대학교 수의과대학 수의외과학 교실) ,  최석화 (충북대학교 수의과대학 수의외과학 교실) ,  김근형 (충북대학교 수의과대학 수의외과학 교실)

초록
AI-Helper 아이콘AI-Helper

본 연구는 키토산 알지네이트 수화겔을 사용하여 제작된 연골세포의 3차원 구조를 유지하며 생물학적, 생리학적인 기능을 유지하는데 적합한 poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) 지지체의 효과에 대한 연구이다. 체내에서 수화겔은 단독으로 지지체 역할을 하기에는 부하를 견디기에 약하다. 이에 본 연구에서는 연골세포와 유사한 세포, 세포외 기질의 3차원적 구성을 만들기 위해 PLCL 지지체와 수화겔을 사용하여 합성 지지체를 제작하였다. 염화나트륨을 사용한 입자 침출 기법으로 85%의 다공성, $300-500{\mu}m$ 크기의 구멍을 가진 탄성력 높은 지지체를 제작하였다. 소의 연골세포와 키토산 알지네이트 겔 혼합물이 PLCL 지지체에 적용되었고 대조군의 알지네이트와 비교 연구하였다. 키토산 알지네이트 수화겔과 연골세포가 혼합된 경우에 알지네이트 단독 사용에 비해 세포 성숙, 증식, 세포외 기질의 합성, sGAG 생성과 II 형 콜라겐의 발현 등의 효과가 좋은 것으로 확인되었다. 본 연구 결과를 통해 PLCL 지지체에 연골세포와 키토산 알지네이트 겔 혼합물을 적용할 경우 세포 증식과 기질의 합성에 적합한 환경을 만들 수 있으며 연골의 복구와 재생에 효과적으로 사용될 수 있을 것으로 기대된다.

Abstract AI-Helper 아이콘AI-Helper

This study was designed in the fabricated poly (L-Lactic-co-${\varepsilon}$-Caprolactone) (PLCL) scaffold using chitosan-alginate hydrogel, which would be more suitable to maintain the biological and physiological functions continuing three dimensional spatial organizations for chondrocyt...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Therefore, the objectives of this study were to investigate the use of chitosan-alginate mixed hydrogel that might be useful to enhance the chondrocytes function in creating cartilage tissue onto the fabricated poly (L-Lactic-co-ε-Caprolactone) (PLCL) scaffold for advanced use for the repair of damaged cartilage.
본문요약 정보가 도움이 되었나요?

참고문헌 (45)

  1. Abarrategi A, Lopiz-Morales Y, Ramos V, Civantos A, Lopez- Duran L, Marco F, Lopez-Lacomba JL. Chitosan scaffolds for osteochondral tissue regeneration. J Biomed Mater Res A 2010; 95: 1132-1141. 

  2. Almqvist KF, Wang L, Wang J, Baeten D, Cornelissen M, Verdonk R, Veys EM, Verbruggen G. Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis 2001; 60: 781-790. 

  3. Amaral IF, Sampaio P, Barbosa MA. Three-dimensional culture of human osteoblastic cells in chitosan sponges: the effect of the degree of acetylation. J Biomed Mater Res A 2006; 76: 335-346. 

  4. Ayala R, Zhang C, Yang D, Hwang Y, Aung A, Shroff SS, Arce FT, Lal R, Arya G, Varghese S. Engineering the cellmaterial interface for controlling stem cell adhesion, migration, and differentiation. Biomaterials 2011; 32: 3700-3711. 

  5. Bentley G, Biant LC, Vijayan S, Macmull S, Skinner JA, Carrington RW. Minimum ten-year results of a prospective randomised study of autologous chondrocyte implantation versus mosaicplasty for symptomatic articular cartilage lesions of the knee. J Bone Joint Surg Br 2012; 94: 504-509. 

  6. Beekman B, Verzijl N, Bank RA, von der Mark K, TeKoppele JM. Synthesis of collagen by bovine chondrocytes cultured in alginate; posttranslational modifications and cell matrix interaction. Exp Cell Res 1997; 237: 135-141. 

  7. Bonaventure J, Kadhom N, Cohen-Solal L, Ng KH, Bourguignon J, Lasselin C, Freisinger P. Reexpression of cartilage-specific genes by dedifferentiated human articular chondrocytes cultured in alginate beads. Exp Cell Res 1994; 212: 97-104. 

  8. Boyan BD, Bonewald LF, Paschalis EP, Lohmann CH, Rosser J, Cochran DL, Dean DD, Schwartz Z, Boskey AL. Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int 2002; 71: 519-529. 

  9. Cao Y, Vacanti JP, Paige KT, Upton J, Vacanti CA. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997; 100: 297-302. 

  10. Chang SH, Hsiao YW, Lin HY. Low-frequency electromagnetic field exposure accelerates chondrocytic phenotype expression on chitosan substrate. Orthopedics 2011; 34: 20-26. 

  11. Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials 2001; 22: 261-268. 

  12. Chouzouri G, Xanthos M. In vitro bioactivity and degradation of polycaprolactone composites containing silicate fillers. Acta Biomater 2007; 3: 745-756. 

  13. Dang JM, Sun DD, Shin-Ya Y, Sieber AN, Kostuik JP, Leong KW. Temperature-responsive hydroxybutyl chitosan for the culture of mesenchymal stem cells and intervertebral disk cells. Biomaterials 2006; 27: 406-418. 

  14. Dare EV, Griffith M, Poitras P, Kaupp JA, Waldman SD, Carlsson DJ, Dervin G, Mayoux C, Hincke MT. Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration. Cells Tissues Organs 2009; 190: 313-325. 

  15. Dhiman HK, Ray AR, Panda AK. Characterization and evaluation of chitosan matrix for in vitro growth of MCF-7 breast cancer cell lines. Biomaterials 2004; 25: 5147-5154. 

  16. Discher DE, Janmey P, Wang YL. Tissue cells feel and respond to the stiffness of their substrate. Science 2005; 310: 1139-1143. 

  17. Docherty S, Engstrand T. Bone morphogenetic proteins in cranial reconstructions: clinical evaluation of heparin-chitosan as a carrier for BMP-2. Plast Reconstr Surg 2009; 123: 192-193. 

  18. Donati I, Stredanska S, Silvestrini G, Vetere A, Marcon P, Marsich E, Mozetic P, Gamini A, Paoletti S, Vittur F. The aggregation of pig articular chondrocyte and synthesis of extracellular matrix by a lactose-modified chitosan. Biomaterials 2005; 26: 987-998. 

  19. Hsu SH, Whu SW, Hsieh SC, Tsai CL, Chen DC, Tan TS. Evaluation of chitosan-alginate-hyaluronate complexes modified by an RGD-containing protein as tissue-engineering scaffolds for cartilage regeneration. Artif Organs 2004; 28: 693-703. 

  20. Jung Y, Kim SH, Kim YH. The effect of hybridization of hydrogels and poly (L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering. J Biomater Sci Polym Ed 2010; 21: 581-592. 

  21. Kang Y, Yang J, Khan S, Anissian L, Ameer GA. A new biodegradable polyester elastomer for cartilage tissue engineering. J Biomed Mater Res A 2006; 77: 331-339. 

  22. Khetan S and Burdick J. Cellular encapsulation in 3D hydrogels for tissue engineering. J Vis Exp 2009; 26: 32. 

  23. Kim IY, Seo SJ, Moon HS, Yoo MK, Park IY, Kim BC, Cho CS. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv 2008; 26: 1-21. 

  24. Lahiji A, Sohrabi A, Hungerford DS, Frondoza CG. Chitosan supports the expression of extracellular matrix proteins in human osteoblasts and chondrocytes. J Biomed Mater Res 2000; 51: 586-595. 

  25. Li XM, Peng WJ, Wu H, Kacher D, Xia LM, Ai F, Li F, Xiong W. MRI findings in injured articular cartilage of the knee correlated with surgical findings. Chin Med J 2009; 122: 2624-2630. 

  26. Lu JX, Prudhommeaux F, Meunier A, Sedel L, Guillemin G. Effects of chitosan on rat knee cartilages. Biomaterials 1999; 20: 1937-1944. 

  27. Ma J, Wang H, He B, Chen J. A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human neofetal dermal fibroblasts. Biomaterials 2001; 22: 331-336. 

  28. Mandl EW, van der Veen SW, Verhaar JA, van Osch GJ. Multiplication of human chondrocytes with low seeding densities accelerates cell yield without losing redifferentiation capacity. Tissue Eng 2004; 10: 109-118. 

  29. Marler JJ, Guha A, Rowley J, Koka R, Mooney D, Upton J, Vacanti JP. Soft-tissue augmentation with injectable alginate and syngeneic fibroblasts. Plast Reconstr Surg 2000; 105: 2049-2058. 

  30. Mei Y, Saha K, Bogatyrev SR, Yang J, Hook AL, Kalcioglu ZI, Cho SW, Mitalipova M, Pyzocha N, Rojas F, Van Vliet KJ, Davies MC, Alexander MR, Langer R, Jaenisch R, Anderson DG. Combinatorial development of biomaterials for clonal growth of human pluripotent stem cells. Nat Mater 2010; 9: 768-778. 

  31. Mobasheri A, Barrett-Jolley R, Carter SD, Martin-Vasallo P, Schulze-Tanzil G, Shakibaei M. 2005. Functional roles of mechanosensitive ion channels, ss1 integrins and kinase cascades in chondrocyte mechanotransduction. In: Kamkin A, Kiseleva I, editors. Mechanosensitivity in cells and tissues. Moscow: Academia 2005: 1-21. 

  32. Montembault A, Tahiri K, Korwin-Zmijowska C, Chevalier X, Corvol MT, Domard A. A material decoy of biological media based on chitosan physical hydrogels: application to cartilage tissue engineering. Biochimie 2006; 88: 551-564. 

  33. Nettles DL, Elder SH, Gilbert JA. Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Eng 2002; 8: 1009-1016. 

  34. Perka C, Schultz O, Spitzer RS, Lindenhayn K. The influence of transforming growth factor beta1 on mesenchymal cell repair of full-thickness cartilage defects. J Biomed Mater Res 2000; 52: 543-552. 

  35. Poon YF, Cao Y, Liu Y, Chan V, Chan-Park MB. Hydrogels based on dual curable chitosan-graft-polyethylene glycolgraft- methacrylate: application to layer-by-layer cell encapsulation. ACS Appl Mater Interfaces 2010; 2: 2012-2025. 

  36. Prasad BR, Brook MA, Smith T, Zhao S, Chen Y, Sheardown H, D'Souza R, Rochev Y. Controlling cellular activity by manipulating silicone surface roughness. Colloids Surf B Biointerfaces 2010; 78: 237-242. 

  37. Rui YF, Du L, Wang Y, Lui PP, Tang TT, Chan KM, Dai KR. Bone morphogenetic protein 2 promotes transforming growth factor beta3-induced chondrogenesis of human osteoarthritic synovium-derived stem cells. Chin Med J 2010; 123: 3040-3048. 

  38. Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. J Surg Res 2006; 133: 185-192. 

  39. Shim IK, Suh WH, Lee SY, Lee SH, Heo SJ, Lee MC, Lee SJ. Chitosan nano-/microfibrous double-layered membrane with rolled-up three-dimensional structures for chondrocyte cultivation. J Biomed Mater Res 2009; 90: 595-602. 

  40. Steinert AF, Ghivizzani SC, Rethwilm A, Tuan RS, Evans CH, Noth U. Major biological obstacles for persistent cellbased regeneration of articular cartilage. Arthritis Res Ther 2007; 9: 213. 

  41. Sutradhar BC, Hong G, Ge Z, Kim G. Coculture of bovine chondrocytes with demineralized bone matrix in chitosanalginate beads enhances chondrogenesis. J Med Biol Eng 2012; 33: 518-525. 

  42. Swieszkowski W, Tuan BH, Kurzydlowski KJ, Hutmacher DW. Repair and regeneration of osteochondral defects in the articular joints. Biomol Eng 2007; 24: 489-495. 

  43. Tan H, Chu CR, Payne KA, Marra KG. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering. Biomaterials 2009; 30: 2499-2506. 

  44. Widuchowski W, Lukasik P, Kwiatkowski G, Faltus R, Szyluk K, Widuchowski J, Koczy B. Isolated full thickness chondral injuries. Prevalance and outcome of treatment. A retrospective study of 5233 knee arthroscopies. Acta Chir Orthop Traumatol Cech 2008; 75: 382-386. 

  45. Xie J, Ihara M, Jung Y, Kwon IK, Kim SH, Kim YH, Matsuda T. Mechano-active scaffold design based on microporous poly (L-lactide-co-epsilon-caprolactone) for articular cartilage tissue engineering: dependence of porosity on compression force-applied mechanical behaviors. Tissue Eng 2006; 12: 449-458. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로