$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

DSA 전극에서 염소 발생 메커니즘
A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®) 원문보기

Korean chemical engineering research = 화학공학, v.53 no.5, 2015년, pp.531 - 539  

김지예 (서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소) ,  김춘수 (서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소) ,  김성환 (서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소) ,  윤제용 (서울대학교 공과대학 화학생물공학부, 화학공정신기술 연구소)

초록
AI-Helper 아이콘AI-Helper

클로로알카리 산업은 염화나트륨 수용액전기분해로 연간 약 7천만 톤의 가성소다 및 염소를 생산하는 전 세계적으로 가장 큰 전기화학 공정 중 하나이다. 클로로알카리 공정에서는 DSA(Dimensionally Stable Anodes) 전극인 $RuO_2$$IrO_2$를 주로 사용하여 염소를 생산하며 상업적으로 사용되고 있는 전극에 비하여 염소 발생 효율이 높은 전극을 개발하려는 연구가 계속되고 있다. 그러나 보다 염소 발생 효율이 좋은 전극을 개발하기 위해서는 DSA 전극에서의 염소 발생 메커니즘에 대한 이해가 뒷받침되어야 한다. 따라서 본 글에서는 기존 연구를 중심으로 DSA 전극에서 염소 발생 메커니즘 연구가 현재까지 어떻게 발전되어 왔는지 검토하고 염소 발생 메커니즘의 핵심적인 요인들을 분석 및 정리하여 DSA 전극에서 염소 발생을 체계적으로 이해하는데 도움이 되고자 한다.

Abstract AI-Helper 아이콘AI-Helper

Chlor-alkali industry is one of the largest electrochemical processes which annually producing 70 million tons of sodium hydroxide and chlorine from sodium chloride solution. $DSA^{(R)}$ (Dimensionally Stable Anodes) electrodes such as $RuO_2$ and $IrO_2$, which is p...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 고효율 염소 생성용 DSA 전극 개발을 위해서 전극 표면에서의 염소 발생 메커니즘을 살펴보고, 염소 발생에 영향을 미치는 인자들을 체계적으로 검증할 필요가 있다[9]. 따라서, 본 총설에서는 1987년 Trasatti와 2013년 Over의 리뷰논문을 기본 틀로 하여 DSA 전극에서 염소 발생 메커니즘에 대하여 현재까지 연구된 내용을 종합적으로 정리하고, DSA 전극에서 염소 발생 메커니즘의 핵심적인 인자들을 이해하고자 한다.
  • 본총설에서는염소발생메커니즘의연구진행상황을개괄적으로 소개하고, 속도 결정 단계, pH, 전극 구조, 및 염소 발생 중간 물질 등의 인자들이 염소 발생 메커니즘 발전에 어떠한 영향을 주었는지 기존 연구들을 중심으로 정리하였다. 염소 발생 메커니즘은 염소이온의 표면 흡착 상태, 반응 중간 물질의 형태, 전극 표면의 산화 여부, pH 영향, 전극 구조의 영향 등 5가지의 논점을 중심으로 연구가 진행되어 왔으며 최근까지도 보다 정확한 염소 메커니즘을 규명하려는 노력이 계속되고 있다.
  • Table 1에서 나타난 바와 같이 1972년부터 현재까지 DSA 전극에서의 염소 발생 메커니즘에 대한 연구가 활발히 진행되고 있으며 여러 메커니즘이 제시되어 왔다. 이러한 메커니즘 연구에서 속도결정단계, pH, 전극 조성 및 표면 구조, 염소 발생 중간 물질 등의 요인들에 따라 메커니즘이 어떻게 결정되는지 다음 파트에서 보다 심층적으로 살펴보고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
DSA 전극 표면에서 물분해반응을 통하여 산소를 많이 발생시키기 위하여 사용하는 원소는 무엇인가? 한편, Co3O4, Fe3O4와 같이 전극의 산화가 쉽게 일어나고, 산소원자가 전극 표면에 강하게 결합되어 있는 경우 생성된 산소가 전극 표면으로부터 탈착되기 어려워 산소 발생이 적게 일어난다. 따라서, 전극물질과 산소원자 간 적절한 결합 에너지를 갖는 RuO2, IrO2의 경우 산소가 많이 발생할 수 있다. 산소 발생은 염소 발생과 선형적인 관계를 갖는 것으로 알려져 있기 때문에[1] Fig.
클로로알카리 산업이란 무엇인가? 클로로알카리 산업은 염화나트륨 수용액의 전기분해로 연간 약 7천만 톤의 가성소다 및 염소를 생산하는 전 세계적으로 가장 큰 전기화학 공정 중 하나이다. 클로로알카리 공정에서는 DSA(Dimensionally Stable Anodes) 전극인 $RuO_2$ 및 $IrO_2$를 주로 사용하여 염소를 생산하며 상업적으로 사용되고 있는 전극에 비하여 염소 발생 효율이 높은 전극을 개발하려는 연구가 계속되고 있다.
클로로알카리 공정에서 염소이온 공급원으로 무엇을 이용하는가? 1에서 확인할 수 있는 것과 같이 전 세계적으로 연간 6천만 톤 이상의 염소 및 가성소다를 생산하는 기술적·학문적 성공을 거둔 전기화학 공정 중 하나이다. 클로로알카리 공정은 염소이온 공급원으로 대부분 바닷물 또는 고농도 소금물을 이용해서 전기 분해가 이루어진다. Fig.
질의응답 정보가 도움이 되었나요?

참고문헌 (55)

  1. Trasatti, S., "Electrocatalysis in the Anodic Evolution of Oxygen and Chlorine," Electrochimica Acta, 29, 1503(1984). 

  2. Trasatti, S., "Electrocatalysis: Understanding the Success of $DSA^{(R)}$ ," Electrochimica Acta, 45, 2377(2000). 

  3. Hong-li, F., "Review on Domestic Chlor-alkali Industry," Chlor-Alkali Industry, 9, 41(2000). 

  4. Walton, C. W. and White, R. E., "Utility of An Empirical Method of Modeling Combined Zero Gap/attached Electrode Membrane Chlor-alkali Cells," Journal of The Electrochemical Society, 134, 565C(1987). 

  5. Khelifa, A., Moulay, S., Hannane, F., Benslimene, S. and Hecini, M., "Application of An Experimental Design Method to Study the Performance of Electrochlorination Cells," Desalination, 160, 91 (2004). 

  6. Bard, A. J. and Faulkner, L. R., "Electrochemical Methods: Fundamentals and Applications," 2nd Ed., Wiley, New York(2001). 

  7. Tattum, L., "Cw's Asia Chemical Prices for the Week Ended May 26, 2009," IHS Chemical Week, New York(2009). 

  8. Trasatti, S., "Progress in the Understanding of the Mechanism of Chlorine Evolution at Oxide Electrodes," Electrochimica Acta, 32, 369(1987). 

  9. Over, H., "Atomic Scale Insights Into Electrochemical Versus Gas Phase Oxidation of Hcl Over Ruo2-based Catalysts: A Comparative Review," Electrochimica Acta, 93, 313(2013). 

  10. Trasatti, S., "Electrocatalysis by Oxides-attempt at a Unifying Approach," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 111, 125(1980). 

  11. Harrison, J., Caldwell, D. and White, R., "Electrocatalysis and the Chlorine Evolution Reaction," Electrochimica Acta, 28, 1561(1983). 

  12. Harrison, J., Caldwell, D. and White, R., "Electrocatalysis and the Chlorine Evolution Reaction-ii. Comparison of Anode Materials," Electrochimica acta, 29, 203(1984). 

  13. Choi, J., Shim, S. and Yoon, J., "Design and Operating Parameters Affecting An Electrochlorination System," Journal of Industrial and Engineering Chemistry, 19, 215(2013). 

  14. Luu, T. L., Kim, J. and Yoon, J., "Physicochemical Properties of $RuO_2$ and $IrO_2$ Electrodes Affecting Chlorine Evolutions," Journal of Industrial and Engineering Chemistry, 21, 400(2015). 

  15. Choi, J., Park, C. G. and Yoon, J., "Application of An Electrochemical Chlorine-generation System Combined with Solar Energy as Appropriate Technology for Water Disinfection," Transactions of The Royal Society of Tropical Medicine and Hygiene, 107, 124(2013). 

  16. Jirkovsky, J., Hoffmannova, H., Klementova, M. and Krtil, P., "Particle Size Dependence of the Electrocatalytic Activity of Nanocrystalline $RuO_2$ Electrodes," Journal of The Electrochemical Society, 153, E111(2006). 

  17. Ferro, S. and Battisti, A. D., "Electrocatalysis and Chlorine Evolution Reaction at Ruthenium Dioxide Deposited on Conductive Diamond," The Journal of Physical Chemistry B, 106, 2249(2002). 

  18. Cao, H., Lu, D., Lin, J., Ye, Q., Wu, J. and Zheng, G., "Novel Sb-doped Ruthenium Oxide Electrode with Ordered Nanotube Structure and Its Electrocatalytic Activity Toward Chlorine Evolution," Electrochimica Acta, 91, 234(2013). 

  19. Trieu, V., Schley, B., Natter, H., Kintrup, J., Bulan, A. and Hempelmann, R., " $RuO_2$ -based Anodes with Tailored Surface Morphology for Improved Chlorine Electro-activity," Electrochimica Acta, 78, 188(2012). 

  20. Pankratiev, Y. D., "Correlation Between Oxygen Binding Energy and Catalytic Activity of Oxides," Reaction Kinetics and Catalysis Letters, 20, 255(1982). 

  21. Cordfunke, E. and Konings, R., "The Enthalpy of Formation of $RuO_2$ ," Thermochimica acta, 129, 63(1988). 

  22. Ruetschi, P. and Delahay, P., "Influence of Electrode Material on Oxygen Overvoltage: a Theoretical Analysis," The Journal of Chemical Physics, 23, 556(1955). 

  23. O'M, B. J., "Kinetics of Activation Controlled Consecutive Electrochemical Reactions: Anodic Evolution of Oxygen," Journal of Chemical Physics, 24, 817(1956). 

  24. Conway, B. and Salomon, M., "Electrochemical Reaction Orders: Applications to the Hydrogen-and Oxygen-evolution Reactions," Electrochimica Acta, 9, 1599(1964). 

  25. Zeradjanin, A. R., Menzel, N., Strasser, P. and Schuhmann, W., "Role of Water in the Chlorine Evolution Reaction at $RuO_2$ -based electrodes-understanding Electrocatalysis as a Resonance Phenomenon," ChemSusChem, 5, 1897(2012). 

  26. Bianchi, G., "Fundamental and Applied Aspects of the Electrochemistry of Chlorine," Journal of Applied Electrochemistry, 1, 231(1971). 

  27. Erenburg, R., Krishtalik, L. and Bystrov, V., "Mechanism of Chlorine Evolution and Ionization on a Ruthenium Oxide Electrode," Elektrokhirniya, 8, 1740(1972). 

  28. Kuhn, A. and Mortimer, C., "The Kinetics of Chlorine Evolution and Reduction on Titanium-supported Metal Oxides Especially $RuO_2$ and $IrO_2$ ," Journal of the Electrochemical Society, 120, 231(1973). 

  29. Hansen, H. A., Man, I. C., Studt, F., Abild-Pedersen, F., Bligaard, T. and Rossmeisl, J., "Electrochemical Chlorine Evolution at Rutile Oxide (110) Surfaces," Physical Chemistry Chemical Physics, 12, 283(2010). 

  30. Vallet, C., Tilak, B., Zuhr, R. and Chen, C. P., "Rutherford Backscattering Spectroscopic Study of the Failure Mechanism of ( $RuO_2$ + $TiO_2$ )/Ti Thin Film Electrodes in $H_2SO_4$ Solutions," Journal of the Electrochemical Society, 144, 1289(1997). 

  31. Zeradjanin, A. R., Schilling, T., Seisel, S., Bron, M. and Schuhmann, W., "Visualization of Chlorine Evolution at Dimensionally Stable Anodes by Means of Scanning Electrochemical Microscopy," Analytical chemistry, 83, 7645(2011). 

  32. Ardizzone, S., Carugati, A., Lodi, G. and Trasatti, S., "Surface Structure of Ruthenium Dioxide Electrodes and Kinetics of Chlorine Evolution," Journal of The Electrochemical Society, 129, 1689(1982). 

  33. Zeradjanin, A. R., Mantia, F. L., Masa, J. and Schuhmann, W., "Utilization of the Catalyst Layer of Dimensionally Stable Anodesinterplay of morphology and Active Surface Area," Electrochimica Acta, 82, 408(2012). 

  34. Lodi, G., Sivieri, E., Battisti, A. D. and Trasatti, S., "Ruthenium Dioxide-based Film Electrodes," Journal of Applied Electrochemistry, 8, 135(1978). 

  35. Losev, V., Bune, N. Y. and Chuvaeva, L., "Specific Features of the Kinetics of Gas-evolving Reactions on Highly Active Electrodes," Electrochimica Acta, 34, 929(1989). 

  36. Erenburg, R., Krishtalik, L. and Yaroshevskaya, I., "Mechanism of Chlorine Evolution at a Ruthenium-titanium Oxide Electrode," Soviet Electrochemistry, 11, 989(1975). 

  37. Janssen, L., Visser, G. and Barendrecht, E., "Effect of Molecular Chlorine Diffusion on Theoretical Potential-current Density Relations for Chlorine Evolving Electrode," Electrochimica Acta, 28, 155(1983). 

  38. Faita, G. and Fiori, G., "Anodic Discharge of Chloride Ions on Oxide Electrodes," Journal of Applied Electrochemistry, 2, 31(1972). 

  39. Chen, R., Trieu, V., Zeradjanin, A. R., Natter, H., Teschner, D., Kintrup, J., Bulan, A., Schuhmann, W. and Hempelmann, R., "Microstructural Impact of Anodic Coatings on the Electrochemical Chlorine Evolution Reaction," Physical Chemistry Chemical Physics, 14, 7392(2012). 

  40. Augustynski, J., Balsenc, L. and Hinden, J., "X-ray Photoelectron Spectroscopic Studies of Ruo2-based Film Electrodes," Journal of The Electrochemical Society, 125, 1093(1978). 

  41. Krishtalik, L. and Erenburg, R., "Kinetika Slozhnykh Elektrokhimicheskikh Reaktsii (the kinetics of complex electrochemical reactions)," Moscow: Nauka, 240(1981). 

  42. Guerrini, E. and Trasatti, S., "Recent Developments in Understanding Factors of Electrocatalysis," Russian Journal of Electrochemistry, 42, 1017(2006). 

  43. Consonni, V., Trasatti, S., Pollak, F. and O'Grady, W., "Mechanism of Chlorine Evolution on Oxide Anodes Study of Ph Effects," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 228, 393(1987). 

  44. Hepel, T., Pollak, F. H. and O'Grady, W. E., "Chlorine Evolution and Reduction Processes at Oriented Single-crystal $RuO_2$ Electrodes," Journal of The Electrochemical Society, 133, 69(1986). 

  45. Burke, L. D. and O'Neill, J. F., "Some Aspects of the Chlorine Evolution Reaction at Ruthenium Dioxide Anodes," Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101, 341(1979). 

  46. Krishtalik, L., "Kinetics and Mechanism of Anodic Chlorine and Oxygen Evolution Reactions on Transition Metal Oxide Electrodes," Electrochimica Acta, 26, 329(1981). 

  47. Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/ $RuO_2$ Through The Polarisation Resistance: Part III: Proposal of a Reaction Mechanism," Electrochimica Acta, 47, 1145(2002). 

  48. Thomassen, M., Karlsen, C., Borresen, B. and Tunold, R., "Kinetic Investigation of the Chlorine Reduction Reaction on Electrochemically Oxidised Ruthenium," Electrochimica Acta, 51, 2909(2006). 

  49. Comninellis, C., "Electrocatalysis in the Electrochemical Conversion/combustion of Organic Pollutants for Waste Water Treatment," Electrochimica Acta, 39, 1857(1994). 

  50. Erenburg, R., Krishtalik, L. and Bystrov, V., "Chlorine Evolution Mechanism at a Ruthenium Dioxide-titanium Dioxide Electrode," Sov. Electrochem, 8, 1240(1972). 

  51. Janssen, L., Starmans, L., Visser, J. and Barendrecht, E., "Mechanism of the Chlorine Evolution on a Ruthenium Oxide/titanium Oxide Electrode and on a Ruthenium Electrode," Electrochimica Acta, 22, 1093(1977). 

  52. Denton, D., Harrison, J. and Knowles, R., "Chlorine Evolution and Reduction on $RuO_2$ / $TiO_2$ Electrodes," Electrochimica Acta, 24, 521(1979). 

  53. Erenburg, R., "Mechanism of the Chlorine Reaction of Ruthenium-titanium Oxide Anodes," Soviet Electrochemistry, 20, 1481(1984). 

  54. Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/ $RuO_2$ Through the Polarisation Resistance: Part I: Experimental Results and Analysis of the pH Effects," Electrochimica Acta, 47, 1129(2002). 

  55. Fernandez, J., M. Gennero de Chialvo and Chialvo, A., "Kinetic Study of the Chlorine Electrode Reaction on Ti/ $RuO_2$ Through the Polarisation Resistance: Part II: Mechanistic Analysis," Electrochimica Acta, 47, 1137(2002). 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로