$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] '큰 수의 법칙' 탐구 활동에서 나타난 가추법의 유형 분석
An Analysis on Abduction Type in the Activities Exploring 'Law of Large Numbers' 원문보기

數學敎育學硏究 = Journal of educational research in mathematics, v.25 no.3, 2015년, pp.323 - 345  

이윤경 (영남대학교 대학원) ,  조정수 (영남대학교)

초록
AI-Helper 아이콘AI-Helper

본 연구는 통계적 추론과 가추법의 관계를 알아보기 위하여 '큰 수의 법칙' 탐구활동에서 나타난 가추법의 유형을 살펴보았다. Peirce의 가추법, Eco의 가추법 유형, Toulmin의 논증패턴을 바탕으로 통계 수업담화를 분석한 결과, 가추법에 해당하는 수업담화에는 과대 코드화된 가추법이 가장 많이 나타났다. 반면에 학생들의 다양한 사고를 유도하는 과소 코드화된 가추법과 새로운 법칙이나 이론을 만드는 창조적 가추법은 낮은 비율로 나타났다. 추론과정에 사용된 계산기는 추상적 확률 개념을 이해하기 위한 경험적 맥락을 통해 학생들이 추론을 중심으로 한 논증과정에 적극적으로 참여하게 하였다. 이러한 연구 결과를 통해 통계 수업에서는 가추법에 대한 이해와 함께 도구를 이용한 통계적 맥락 형성이 중요함을 알 수 있었다.

Abstract AI-Helper 아이콘AI-Helper

This study examined the types of abduction appeared in the exploration activities of 'law of large numbers' in order to figure out relation between statistical reasoning and abduction. When the classroom discourse of students was analyzed by Peirce's abduction, Eco's abduction type and Toulmin's arg...

Keyword

질의응답

핵심어 질문 논문에서 추출한 답변
통계 교육의 주된 목적은 무엇인가? 통계 교육의 주된 목적은 통계적인 정보를 바탕으로 추론하고 사고할 수 있는 통계적 소양을 갖춘 학생들을 길러내는 데 있다(Ben-Zvi & Garfield, 2004). 이를 위해서 많은 나라의 학교 교육과정에서 통계 교육의 목표로 통계적 추론을 강조하고 있다.
통계적 소양을 갖춘 학생들을 길러내기 위해 많은 나라의 교육과정에서 무엇을 강조하고 있는가? 통계 교육의 주된 목적은 통계적인 정보를 바탕으로 추론하고 사고할 수 있는 통계적 소양을 갖춘 학생들을 길러내는 데 있다(Ben-Zvi & Garfield, 2004). 이를 위해서 많은 나라의 학교 교육과정에서 통계 교육의 목표로 통계적 추론을 강조하고 있다.1) 여기서 통계적 추론은 통계적 개념들을 연결지어 이해할 수 있고, 통계적 과정을 통해 나타난 결과를 해석할 수 있는 것을 의미한다(Garfield, 2002).
통계적 추론이란? 이를 위해서 많은 나라의 학교 교육과정에서 통계 교육의 목표로 통계적 추론을 강조하고 있다.1) 여기서 통계적 추론은 통계적 개념들을 연결지어 이해할 수 있고, 통계적 과정을 통해 나타난 결과를 해석할 수 있는 것을 의미한다(Garfield, 2002). 하지만 이러한 정의에는 추론의 논리나 사고과정에 관하여 명확하게 정의하고 있지 않기 때문에, 실제 학교 현장의 교사들은 통계적 추론의 논리를 알기 어려우며 이로 인하여 통계적 추론 지도에 관한 어려움을 겪고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (61)

  1. 강미정(2007). C. S. 퍼스의 기호학 연구 : 신미술사의 철학을 위하여. 미출판 박사학위논문, 서울대학교, 서울. 

  2. 권용주, 정진수, 박윤복, 강민정(2003). 선언적 과학 지식의 생성 과정에 대한 과학철학적 연구: 귀납적, 귀추적, 연역적 과정을 중심으로. 한국과학교육학회지, 23(3), 215-228. 

  3. 김성도(1997). 기호와 추론 : 퍼스의 가추법을 중심으로. 기호학연구, 3(1), 351-379. 

  4. 김성도(1998). 가추법의 화용론적 함의. 담화와 인지, 5(2), 23-40. 

  5. 김선희, 이종희(2002). 수학적 추론으로서의 가추법. 수학교육학연구, 12(2), 275-290. 

  6. 김선희(2004). 수학적 지식 점유에 관한 기호학적 고찰. 미출판 박사학위논문, 이화여자대학교, 서울. 

  7. 김선희, 김기연(2004). 수학적 모델링 과정에 포함된 추론의 유형 및 역할 분석. 학교수학, 6(3), 283-299. 

  8. 김원경, 문소영, 변지영(2006). 수학교사의 확률과 통계에 대한 지식과 신념. 수학교육, 45(4), 381-406. 

  9. 김정섭, 박수홍(2002). 지식 창출을 위한 논리로서 가추법과 교수설계 적용을 위한 탐색. 교육공학연구, 18(4), 139-165. 

  10. 남주현(2007). 초.중등 통계교육을 위한 통계적 방법론에 대한 연구. 미출판 박사학위논문, 이화여자대학교, 서울. 

  11. 양은경, 신재홍(2014). 개방형 기하 문제에서 학생의 드래깅 활동을 통해 나타난 수학적 추론 분석. 수학교육학연구, 24(1), 1-27. 

  12. 신보미, 이경화(2006). 컴퓨터 시뮬레이션을 통한 통계적 확률 지도에 대한 연구. 수학교육학연구, 16(2), 139-156. 

  13. 이병덕(2008). 논리적 추론과 증명. 서울: 이제이북스. 

  14. 이영하, 이은호(2010). 통계적 추론에서의 표집분포 개념 지도를 위한 시뮬레이션 소프트웨어 설계 및 구현. 학교수학, 12(3), 273-299. 

  15. 이영하, 강민정(2013). 교과서 문제해결에 포함된 가추의 유형: 중학교 2학년과 3학년 수학 교과서를 중심으로. 수학교육학연구, 23(3), 335-351. 

  16. 이정연, 우정호(2009). 조건부확률 개념의 교수학적 분석과 이해 분석. 수학교육학연구, 19(2), 233-256. 

  17. 전영삼(1990). 피셔의 우도와 카르납의 확증도. 철학연구, 14(1), 87-119. 

  18. 정용재, 송진웅(2006). Peirce의 귀추법에 관한 이론적 고찰을 통한 과학교육적 함의 탐색. 한국과학교육학회지, 26(6), 703-722. 

  19. Bakker, A. (2004). Design research in statistics education on symbolizing and computer tools. Freudenthal Institute. 

  20. Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students' construction of global views of data and data representations. Educational studies in mathematics, 45, 35-65. 

  21. Ben-Zvi, D., & Garfield, J. (2004). Statistical literacy, reasoning, and thinking: Goals, definitions, and challenges. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 3-16). Dordrecht, The Netherlands: Kluwer Academic Publishers. 

  22. Chinn, C., & Anderson, R. (1998). The Structure of Discussions inteded to Promote Reasoning. The Teachers College Record, 100(2), 315-368. 

  23. Cobb, P., & McClain, K. (2004). Principles of instructional design for supporting the development of students' statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 375-395). Dordrecht, The Netherlands: Kluwer Academic Publishers. 

  24. delMas, R. C. (2004). A comparison of mathematical and statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 79-95). Dordrecht, The Netherlands: Kluwer Academic Publishers. 

  25. Dinov, I. D., Christou, N., & Gould, R. (2009). Law of large numbers: The theory, applications and technology-based education. Journal of Statistics Education, 17(1), n1. www.amstat.org/publications/jse/v17n1/dinov.html 

  26. Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco & T. Sebeok (Eds.), The Sign of Three: Dupin, Holmes, Peirce (pp. 198-220). Bloomington, IN: Indiana University Press. 

  27. Eco, U. (2009). 기호학과 언어 철학. (김성도 번역.). 파주: 열린책들. (원본출판 1984) 

  28. Ernest, P. (2005). Agency and creativity in the semiotics of learning mathematics. In M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign - Grounding mathematics education (pp. 23-34). New York: Springer. 

  29. Furtak, E. M., Hardy, I., Beinbrech, C., Shavelson, R. J., & Shemwell, J. T. (2010). A framework for analyzing evidence-based reasoning in science classroom discourse. Educational Assessment, 15(3-4), 175-196. 

  30. GAISE (2005a). Guidelines for assessment and instruction in statistics education (GAISE) report: A curriculum framework for PreK-12 statistics education. The American Statistical Association (ASA). Retrieved December 4, 2006, from http://www.amstat.org/education/gaise/GAISEPreK-12.htm 

  31. GAISE (2005b). Guidelines for assessment and instruction in statistics education (GAISE) college report. The American Statistical Association (ASA). Retrieved December 4, 2006, from http://www.amstat.org/education/gaise/GAISECollege.htm 

  32. Garfield, J. (2002). The Challenge of Developing Statistical Reasoning. Journal of Statistics Education, 10(3). www.amstat.org/publications/jse/v10n3/garfield.html 

  33. Garfield, J., & Ben-Zvi, D. (2008). Creating statistical reasoning environments. J. Garfield & D. Ben-Zvi. (Eds.), Developing Students Statistical Reasoning: Connecting Research and Teaching Practice (pp. 45-63). New York: Springer. 

  34. Groth, R. E., & Bergner, J. A. (2006). Preservice elementary teachers' conceptual and procedural knowledge of mean, median, and mode. Mathematical Thinking and Learning, 8(1), 37-63. 

  35. Harradine, A., Batanero, C., & Rossman, A. (2011). Students and teachers' knowledge of sampling and inference. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics-challenges for teaching and teacher education (pp. 235-246). New York: Springer. 

  36. Hoffmann, M, H. G. (2005). Signs as means of discovery. In M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign: Grounding mathematics education (pp. 45-56). New York: Springer. 

  37. Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). " Doing the lesson" or" doing science": Argument in high school genetics. Science Education, 84(6), 757-792. 

  38. Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Hillsdale, NJ: Erlbaum. 

  39. Leavy, A. M. (2006). Using data comparison to support a focus on distribution: Examining preservice teacher's understandings of distribution when engaged in statistical inquiry. Statistics Education Research Journal, 5(2), 89-114. 

  40. Maloney, J., & Simon, S. (2006). Mapping children's discussions of evidence in science to assess collaboration and argumentation. International Journal of Science Education, 28(15), 1817-1841. 

  41. Mason, J. (1996). Abduction at the heart of mathematical being. In E. Gray (Ed.), Thinking about mathematics & Music of the spheres: Papers presented for the inaugural lecture of Professor David Tall (pp. 34-40). Coventry: Mathematics Education Research Centre. 

  42. Meyer, M. (2010). Abduction-A logical view for investigating and initiating processes of discovering mathematical coherences. Educational Studies in Mathematics, 74(2), 185-205. 

  43. National Council of Teachers of Mathematics. (2000). Principles and standards for schools mathematics. Reston, VA: Author. 

  44. Nguyen-Danh (2011). The role of abduction in realizing geometric invariants. In A. Mendez-Vilas (Ed.), Education in a technological world: communicating current and emerging research and technological efforts (pp. 539-547). Badajoz, Spain: FORMATEX. 

  45. Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23-41. 

  46. Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational studies in mathematics, 76(3), 281-303. 

  47. Peirce, C. S. (1931-1935). Collected papers of Charles Sanders Peirce, Vols VII-VIII. B. Arthur (Ed.). Cambridge, MA: Harvard University Press. 

  48. Peirce, C. S. (1958). Collected papers of Charles Sanders Peirce, Vols I-VI. C. Hartshorne & P. Weiss (Eds.). Cambridge, MA: Harvard University Press. 

  49. Petty, M. E. (2001). A case study of the abductive reasoning processes of pre-service elementary education students in a role playing setting concerning a mock senate hearing on global climate change. Ann Arbor, MI: ProQuest Information and Learning Company. 

  50. Pratt, D. (2005). How do teachers foster students' understanding of probability? In G. A. Jones (Ed.), Exploring Probability in School: Challenges for teaching and learning (pp. 171-189). NY: Springer. 

  51. Reading, C., & Reid, J. (2006). An emerging hierarchy of reasoning about distribution: From a variation perspective. Statistics Education Research Journal, 5(2), 46-68. 

  52. Rymes, B. (2009). Classroom discourse analysis: A tool for critical reflection. Cresskill, NJ: Hampton Press. 

  53. Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge, UK: Cambridge University Press. 

  54. Stohl, H. (2005). Probability in teacher education and development. In G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 345-366). NY: Springer. 

  55. Stohl. H., & Tarr. J. E. (2002). Developing notions of inference using probability simulation tools. Journal of Mathematical Behavior, 21, 319-337. 

  56. Toulmin, S. (2003). The uses of argument. New York: Cambridge University Press. 

  57. Walshaw, M., & Anthony, G. (2008). The teacher's role in classroom discourse: A review of recent research into mathematics classrooms. Review of Educational Research, 78(3), 516-551. 

  58. Weber, K., Maher, C., Powell, A., & Lee, H. S. (2008). Learning opportunities from group discussions: Warrants become the objects of debate. Educational Studies in Mathematics, 68(3), 247-261. 

  59. Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Cambridge, MA: Harvard University Press 

  60. Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In: M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the International Group for the Psychology of Mathematics Education, vol 1 (pp. 9-24). Utrecht, The Netherlands: Freudenthal Institute. 

  61. Yackel, E. (2002). What we can learn from analyzing the teacher's role in collective argumentation. Journal of Mathematical Behavior, 21(4), 423-440. 

저자의 다른 논문 :

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로