최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기數學敎育學硏究 = Journal of educational research in mathematics, v.25 no.3, 2015년, pp.323 - 345
This study examined the types of abduction appeared in the exploration activities of 'law of large numbers' in order to figure out relation between statistical reasoning and abduction. When the classroom discourse of students was analyzed by Peirce's abduction, Eco's abduction type and Toulmin's arg...
핵심어 | 질문 | 논문에서 추출한 답변 |
---|---|---|
통계 교육의 주된 목적은 무엇인가? | 통계 교육의 주된 목적은 통계적인 정보를 바탕으로 추론하고 사고할 수 있는 통계적 소양을 갖춘 학생들을 길러내는 데 있다(Ben-Zvi & Garfield, 2004). 이를 위해서 많은 나라의 학교 교육과정에서 통계 교육의 목표로 통계적 추론을 강조하고 있다. | |
통계적 소양을 갖춘 학생들을 길러내기 위해 많은 나라의 교육과정에서 무엇을 강조하고 있는가? | 통계 교육의 주된 목적은 통계적인 정보를 바탕으로 추론하고 사고할 수 있는 통계적 소양을 갖춘 학생들을 길러내는 데 있다(Ben-Zvi & Garfield, 2004). 이를 위해서 많은 나라의 학교 교육과정에서 통계 교육의 목표로 통계적 추론을 강조하고 있다.1) 여기서 통계적 추론은 통계적 개념들을 연결지어 이해할 수 있고, 통계적 과정을 통해 나타난 결과를 해석할 수 있는 것을 의미한다(Garfield, 2002). | |
통계적 추론이란? | 이를 위해서 많은 나라의 학교 교육과정에서 통계 교육의 목표로 통계적 추론을 강조하고 있다.1) 여기서 통계적 추론은 통계적 개념들을 연결지어 이해할 수 있고, 통계적 과정을 통해 나타난 결과를 해석할 수 있는 것을 의미한다(Garfield, 2002). 하지만 이러한 정의에는 추론의 논리나 사고과정에 관하여 명확하게 정의하고 있지 않기 때문에, 실제 학교 현장의 교사들은 통계적 추론의 논리를 알기 어려우며 이로 인하여 통계적 추론 지도에 관한 어려움을 겪고 있다. |
강미정(2007). C. S. 퍼스의 기호학 연구 : 신미술사의 철학을 위하여. 미출판 박사학위논문, 서울대학교, 서울.
김성도(1997). 기호와 추론 : 퍼스의 가추법을 중심으로. 기호학연구, 3(1), 351-379.
김성도(1998). 가추법의 화용론적 함의. 담화와 인지, 5(2), 23-40.
김선희(2004). 수학적 지식 점유에 관한 기호학적 고찰. 미출판 박사학위논문, 이화여자대학교, 서울.
김원경, 문소영, 변지영(2006). 수학교사의 확률과 통계에 대한 지식과 신념. 수학교육, 45(4), 381-406.
김정섭, 박수홍(2002). 지식 창출을 위한 논리로서 가추법과 교수설계 적용을 위한 탐색. 교육공학연구, 18(4), 139-165.
남주현(2007). 초.중등 통계교육을 위한 통계적 방법론에 대한 연구. 미출판 박사학위논문, 이화여자대학교, 서울.
이병덕(2008). 논리적 추론과 증명. 서울: 이제이북스.
전영삼(1990). 피셔의 우도와 카르납의 확증도. 철학연구, 14(1), 87-119.
Bakker, A. (2004). Design research in statistics education on symbolizing and computer tools. Freudenthal Institute.
Ben-Zvi, D., & Arcavi, A. (2001). Junior high school students' construction of global views of data and data representations. Educational studies in mathematics, 45, 35-65.
Ben-Zvi, D., & Garfield, J. (2004). Statistical literacy, reasoning, and thinking: Goals, definitions, and challenges. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning, and thinking (pp. 3-16). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Chinn, C., & Anderson, R. (1998). The Structure of Discussions inteded to Promote Reasoning. The Teachers College Record, 100(2), 315-368.
Cobb, P., & McClain, K. (2004). Principles of instructional design for supporting the development of students' statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 375-395). Dordrecht, The Netherlands: Kluwer Academic Publishers.
delMas, R. C. (2004). A comparison of mathematical and statistical reasoning. In D. Ben-Zvi & J. Garfield (Eds.), The challenge of developing statistical literacy, reasoning and thinking (pp. 79-95). Dordrecht, The Netherlands: Kluwer Academic Publishers.
Dinov, I. D., Christou, N., & Gould, R. (2009). Law of large numbers: The theory, applications and technology-based education. Journal of Statistics Education, 17(1), n1. www.amstat.org/publications/jse/v17n1/dinov.html
Eco, U. (1983). Horns, hooves, insteps: Some hypotheses on three types of abduction. In U. Eco & T. Sebeok (Eds.), The Sign of Three: Dupin, Holmes, Peirce (pp. 198-220). Bloomington, IN: Indiana University Press.
Eco, U. (2009). 기호학과 언어 철학. (김성도 번역.). 파주: 열린책들. (원본출판 1984)
Ernest, P. (2005). Agency and creativity in the semiotics of learning mathematics. In M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign - Grounding mathematics education (pp. 23-34). New York: Springer.
Furtak, E. M., Hardy, I., Beinbrech, C., Shavelson, R. J., & Shemwell, J. T. (2010). A framework for analyzing evidence-based reasoning in science classroom discourse. Educational Assessment, 15(3-4), 175-196.
GAISE (2005a). Guidelines for assessment and instruction in statistics education (GAISE) report: A curriculum framework for PreK-12 statistics education. The American Statistical Association (ASA). Retrieved December 4, 2006, from http://www.amstat.org/education/gaise/GAISEPreK-12.htm
GAISE (2005b). Guidelines for assessment and instruction in statistics education (GAISE) college report. The American Statistical Association (ASA). Retrieved December 4, 2006, from http://www.amstat.org/education/gaise/GAISECollege.htm
Garfield, J. (2002). The Challenge of Developing Statistical Reasoning. Journal of Statistics Education, 10(3). www.amstat.org/publications/jse/v10n3/garfield.html
Garfield, J., & Ben-Zvi, D. (2008). Creating statistical reasoning environments. J. Garfield & D. Ben-Zvi. (Eds.), Developing Students Statistical Reasoning: Connecting Research and Teaching Practice (pp. 45-63). New York: Springer.
Groth, R. E., & Bergner, J. A. (2006). Preservice elementary teachers' conceptual and procedural knowledge of mean, median, and mode. Mathematical Thinking and Learning, 8(1), 37-63.
Harradine, A., Batanero, C., & Rossman, A. (2011). Students and teachers' knowledge of sampling and inference. In C. Batanero, G. Burrill, & C. Reading (Eds.), Teaching statistics in school mathematics-challenges for teaching and teacher education (pp. 235-246). New York: Springer.
Hoffmann, M, H. G. (2005). Signs as means of discovery. In M. H. G. Hoffmann, J. Lenhard, & F. Seeger (Eds.), Activity and sign: Grounding mathematics education (pp. 45-56). New York: Springer.
Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). " Doing the lesson" or" doing science": Argument in high school genetics. Science Education, 84(6), 757-792.
Krummheuer, G. (1995). The ethnography of argumentation. In P. Cobb & H. Bauersfeld (Eds.), The emergence of mathematical meaning: Interaction in classroom cultures (pp. 229-269). Hillsdale, NJ: Erlbaum.
Leavy, A. M. (2006). Using data comparison to support a focus on distribution: Examining preservice teacher's understandings of distribution when engaged in statistical inquiry. Statistics Education Research Journal, 5(2), 89-114.
Maloney, J., & Simon, S. (2006). Mapping children's discussions of evidence in science to assess collaboration and argumentation. International Journal of Science Education, 28(15), 1817-1841.
Mason, J. (1996). Abduction at the heart of mathematical being. In E. Gray (Ed.), Thinking about mathematics & Music of the spheres: Papers presented for the inaugural lecture of Professor David Tall (pp. 34-40). Coventry: Mathematics Education Research Centre.
Meyer, M. (2010). Abduction-A logical view for investigating and initiating processes of discovering mathematical coherences. Educational Studies in Mathematics, 74(2), 185-205.
National Council of Teachers of Mathematics. (2000). Principles and standards for schools mathematics. Reston, VA: Author.
Nguyen-Danh (2011). The role of abduction in realizing geometric invariants. In A. Mendez-Vilas (Ed.), Education in a technological world: communicating current and emerging research and technological efforts (pp. 539-547). Badajoz, Spain: FORMATEX.
Pedemonte, B. (2007). How can the relationship between argumentation and proof be analysed? Educational Studies in Mathematics, 66(1), 23-41.
Pedemonte, B., & Reid, D. (2011). The role of abduction in proving processes. Educational studies in mathematics, 76(3), 281-303.
Peirce, C. S. (1931-1935). Collected papers of Charles Sanders Peirce, Vols VII-VIII. B. Arthur (Ed.). Cambridge, MA: Harvard University Press.
Peirce, C. S. (1958). Collected papers of Charles Sanders Peirce, Vols I-VI. C. Hartshorne & P. Weiss (Eds.). Cambridge, MA: Harvard University Press.
Petty, M. E. (2001). A case study of the abductive reasoning processes of pre-service elementary education students in a role playing setting concerning a mock senate hearing on global climate change. Ann Arbor, MI: ProQuest Information and Learning Company.
Pratt, D. (2005). How do teachers foster students' understanding of probability? In G. A. Jones (Ed.), Exploring Probability in School: Challenges for teaching and learning (pp. 171-189). NY: Springer.
Reading, C., & Reid, J. (2006). An emerging hierarchy of reasoning about distribution: From a variation perspective. Statistics Education Research Journal, 5(2), 46-68.
Rymes, B. (2009). Classroom discourse analysis: A tool for critical reflection. Cresskill, NJ: Hampton Press.
Sfard, A. (2008). Thinking as communicating: Human development, the growth of discourses, and mathematizing. Cambridge, UK: Cambridge University Press.
Stohl, H. (2005). Probability in teacher education and development. In G. A. Jones (Ed.), Exploring probability in school: Challenges for teaching and learning (pp. 345-366). NY: Springer.
Stohl. H., & Tarr. J. E. (2002). Developing notions of inference using probability simulation tools. Journal of Mathematical Behavior, 21, 319-337.
Toulmin, S. (2003). The uses of argument. New York: Cambridge University Press.
Walshaw, M., & Anthony, G. (2008). The teacher's role in classroom discourse: A review of recent research into mathematics classrooms. Review of Educational Research, 78(3), 516-551.
Weber, K., Maher, C., Powell, A., & Lee, H. S. (2008). Learning opportunities from group discussions: Warrants become the objects of debate. Educational Studies in Mathematics, 68(3), 247-261.
Wertsch, J. V. (1985). Vygotsky and the social formation of mind. Cambridge, MA: Harvard University Press
Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms. In: M. van den Heuvel-Panhuizen (Ed.), Proceedings of the 25th conference of the International Group for the Psychology of Mathematics Education, vol 1 (pp. 9-24). Utrecht, The Netherlands: Freudenthal Institute.
Yackel, E. (2002). What we can learn from analyzing the teacher's role in collective argumentation. Journal of Mathematical Behavior, 21(4), 423-440.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.