$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 목질섭식곤충의 장내 세균 다양성 분석 및 섬유소 분해균 탐색
Analysis of gut bacterial diversity and exploration of cellulose-degrading bacteria in xylophagous insects 원문보기

Korean journal of microbiology = 미생물학회지, v.51 no.3, 2015년, pp.209 - 220  

최민영 (국립농업과학원 농업미생물과) ,  안재형 (국립농업과학원 농업미생물과) ,  송재경 (국립농업과학원 농업미생물과) ,  김성현 (국립농업과학원 곤충산업과) ,  배진우 (경희대학교 생물학과) ,  원항연 (국립농업과학원 농업미생물과)

초록
AI-Helper 아이콘AI-Helper

목질 섭식 곤충에 관한 장내 세균 군집의 연구를 이용한 lignocellulose의 분해는 생명 공학적 응용에 있어 큰 잠재력을 갖는다. 본 연구에서 목질 섭식 곤충의 장내 세균 군집은 16S rRNA 유전자를 기반으로 한 파이로시퀀싱 방법을 이용하여 분석되었다. 분석된 모든 곤충에서 중장보다 후장에서 OTU수, 종 풍부도, 다양성 지수가 높았다. 세균 문 또는 강 수준의 다양성을 분석한 결과, 흰개미를 제외한 곤충의 장내 군집에는 Firmicutes, Bacteroidetes, ${\gamma}-Proteobacteria$가 우점하였다. PCoA (principal coordinates analysis)를 이용하여 세균의 군집 구조를 분석한 결과, 서식지보다는 곤충의 과별로 클러스터링 되는 경향이었다. CMC 분해 활성이 가장 높은 두 균주는 Bacillus toyonensis $BCT-7112^T$Lactococcus lactis subsp. hordniae $NCDO\;2181^T$과 유연관계가 높았다. 장 적출물의 섬유소 분해활성 실험 결과, 하늘소 후장에서 ${\beta}-1,4-glucosidase$, ${\beta}-1,4-endoglucanase$, ${\beta}-1,4-xylanase$효소활성이 가장 높았다. 본 연구에서는 목질 섭식 곤충의 장내에 다양하고 풍부한 세균이 서식하며, 섬유소를 분해하는 세균이 존재한다는 사실을 확인하였고, 이로부터 다양하고 유용한 섬유소 분해균을 분리할 수 있을 것으로 판단되었다.

Abstract AI-Helper 아이콘AI-Helper

In this study, gut bacterial communities in xylophagous insects were analyzed using the pyrosequencing of 16S rRNA genes for their potential biotechnological applications in lignocelluloses degradation. The result showed that operational taxonomic units (OTUs), species richness and diversity index w...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • ,2013). 따라서 본 연구에서는 이전에 연구가 잘 되어있지 않은 목질 섭식 곤충의 곤충 종류 및 장 부위별 장내 세균 군집 조성 및 다양성을 분석하기 위해서 16S rRNA 유전자 염기서열 기반의 파이로시퀀싱 기법을 이용하였고, DNS (dinitrosalicylic acid) 방법을 이용하여 각 곤충의 장내 섬유소 분해능 시험을 수행하였다. 또한 향후 연구에 사용될 수 있는 섬유소 분해능을 가진 새로운 세균을 분리하기 위하여 곤충의 장 적출물을 희석평판 배양하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
바이오 에탄올을 생산하는 방법은 무엇인가? , 2005), 섬유소를 기반으로 얻을 수 있는 바이오연료가 주목을 받고 있다(Sun and Scharf, 2010). 바이오 에탄올은 바이오매스의 섬유소 부분을 가수분해하여 얻어진 단당류를 발효하여 생산되며(Hamelinck et al., 2005), 미생물을 이용한 발효 공정은 다른 방법들에 비해 경제적이고 환경친화적이라는 장점이 있다(Eijsink et al.
인간의 장내 세균은 어떤 역할을 하는가? 곤충은 지구상에서 가장 다양하고 풍부한 동물 중 하나이며(Engel and Moran, 2013), 곤충의 장내에는 많은 미생물들이 서식하고 있다(Dillon and Dillon, 2004). 곤충의 장내에 공생하는 세균은 숙주의 생리 대사 조절, 섭식한 먹이의 소화 효율 촉진, 외부로부터 유입된 유해한 미생물의 억제 등의 중요한 역할을 수행하며(Kaufman and Klug, 1991; Dillon and Charnley, 2002; Engel and Moran, 2013), 인간의 장내 세균의 경우에는 영양분을 합성하고 면역체계와 관련한 상호작용 등의 역할을 수행한다(Clemente et al., 2012).
사슴벌레, 하늘소, 갑옷바퀴, 흰개비 등의 목질 섭식 곤충의 세균 군집 분석결과 중장보다 후장에서 수치가 높았던 항목에는 무엇이 있는가? 본 연구에서 목질 섭식 곤충의 장내 세균 군집은 16S rRNA 유전자를 기반으로 한 파이로시퀀싱 방법을 이용하여 분석되었다. 분석된 모든 곤충에서 중장보다 후장에서 OTU수, 종 풍부도, 다양성 지수가 높았다. 세균 문 또는 강 수준의 다양성을 분석한 결과, 흰개미를 제외한 곤충의 장내 군집에는 Firmicutes, Bacteroidetes, ${\gamma}-Proteobacteria$가 우점하였다.
질의응답 정보가 도움이 되었나요?

참고문헌 (49)

  1. Arias-Cordero, E., Ping, L.Y., Reichwald, K., Delb, H., Platzer, M., and Boland, W. 2012. Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the forest cockchafer, Melolontha hippocastani. PLoS ONE 7, e51557. 

  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. 

  3. Brune, A. 2014. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 12, 168-180. 

  4. Cazemier, A.E., Verdoes, J.C., Reubsaet, F.A.G., Hackstein, J.H.P., van der Drift, C., and den Camp, H. 2003. Promicromonospora pachnodae sp. nov., a member of the (hemi)cellulolytic hindgut flora of larvae of the scarab beetle Pachnoda marginata. Antonie van Leeuwenhoek 83, 135-148. 

  5. Chun, J., Kim, K.Y., Lee, J.H., and Choi, Y. 2010. The analysis of oral microbial communities of wild-type and toll-like receptor 2-deficient mice using a 454 GS FLX Titanium pyrosequencer. BMC Microbiol. 10, 101. 

  6. Clemente, J.C., Ursell, L.K., Parfrey, L.W., and Knight, R. 2012. The impact of the gut microbiota on human health: an integrative view. Cell. 148, 1258-1270. 

  7. Cole, J.R., Wang, Q., Cardenas, E., Fish, J., Chai, B., Farris, R.J., Kulam-Syed-Mohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., et al. 2009. The Ribosomal Database Project:improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141-D145. 

  8. Colman, D.R., Toolson, E.C., and Takacs-Vesbach, C.D. 2012. Do diet and taxonomy influence insect gut bacterial communities? Mol. Ecol. 21, 5124-5137. 

  9. Cook, D.M. and Doran-Peterson, J. 2010. Mining diversity of the natural biorefinery housed within Tipula abdominalis larvae for use in an industrial biorefinery for production of lignocellulosic ethanol. Insect Sci. 17, 303-312. 

  10. Despres, L., David, J.P., and Gallet, C. 2007. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298-307. 

  11. Dillon, R. and Charnley, K. 2002. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res. Microbiol. 153, 503-509. 

  12. Dillon, R.J. and Dillon, V.M. 2004. The gut bacteria of insects:Nonpathogenic interactions. Annu. Rev. Entomol. 49, 71-92. 

  13. Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996-998. 

  14. Eijsink, V.G.H., Vaaje-Kolstad, G., Varum, K.M., and Horn, S.J. 2008. Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol. 26, 228-235. 

  15. Engel, P. and Moran, N.A. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37, 699-735. 

  16. Eriksson, T., Borjesson, J., and Tjerneld, F. 2002. Mechanism of surfactant effect in enzymatic hydrolysis of lignocellulose. Enzyme Microb. Technol. 31, 353-364. 

  17. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O'Hare, M., and Kammen, D.M. 2006. Ethanol can contribute to energy and environmental goals. Science 311, 506-508. 

  18. Geib, S.M., Jimenez-Gasco, M.D.M., Carlson, J.E., Tie, M., and Hoover, K. 2009. Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval asian longhorned beetle. Environ. Entomol. 38, 686-699. 

  19. Grieco, M.A., Cavalcante, J.J., Cardoso, A.M., Vieira, R.P., Machado, E.A., Clementino, M.M., Medeiros, M.N., Albano, R.M., Garcia, E.S., de Souza, W., et al. 2013. Microbial community diversity in the gut of the south American termite Cornitermes cumulans (Isoptera: Termitidae). Microb. Ecol. 65, 197-204. 

  20. Gruenwald, S., Pilhofer, M., and Hoell, W. 2010. Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles [Coleoptera: Cerambycidae]. Syst. Appl. Microbiol. 33, 25-34. 

  21. Hahn-Hagerdal, B., Galbe, M., Gorwa-Grauslund, M.F., Liden, G., and Zacchi, G. 2006. Bio-ethanol - the fuel of tomorrow from the residues of today. Trends Biotechnol. 24, 549-556. 

  22. Hamelinck, C.N., van Hooijdonk, G., and Faaij, A.P.C. 2005. Ethanol from lignocellulosic biomass: techno-economic performance in short-, middle- and long-term. Biomass Bioenerg. 28, 384-410. 

  23. Hebert, P.D.N., Cywinska, A., Ball, S.L., and DeWaard, J.R. 2003. Biological identifications through DNA barcodes. Proc. R. Soc. B-Biol. Sci. 270, 313-321. 

  24. Huang, X.F., Bakker, M.G., Judd, T.M., Reardon, K.F., and Vivanco, J.M. 2013. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Microb. Ecol. 65, 531-536. 

  25. Huang, S.W., Zhang, H.Y., Marshall, S., and Jackson, T.A. 2010. The scarab gut: A potential bioreactor for bio-fuel production. Insect Sci. 17, 175-183. 

  26. Kaufman, M.G. and Klug, M.J. 1991. The contribution of hindgut bacteria to dietary carbohydrate utilization by crickets (Orthoptera, Gryllidae). Comp. Biochem. Physiol. 98, 117-123. 

  27. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e:A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. 

  28. Konig, H., Li, L., and Frohlich, J. 2013. The cellulolytic system of the termite gut. Appl. Microbiol. Biotechnol. 97, 7943-7962. 

  29. Koroiva, R., Souza, C.W.O., Toyama, D., Henrique-Silva, F., and Fonseca-Gessner, A.A. 2013. Lignocellulolytic enzymes and bacteria associated with the digestive tracts of Stenochironomus (Diptera: Chironomidae) larvae. Genet. Mol. Res. 12, 3421-3434. 

  30. Kukor, J.J., Cowan, D.P., and Martin, M.M. 1988. The role of ingested fungal enzymes in cellulose digestion in the larvae of cerambycid beetles. Physiol. Zool. 61, 364-371. 

  31. Lykidis, A., Mavromatis, K., Ivanova, N., Anderson, I., Land, M., DiBartolo, G., Martinez, M., Lapidus, A., Lucas, S., Copeland, A., et al. 2007. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J. Bacteriol. 189, 2477-2486. 

  32. Maki, M., Leung, K.T., and Qin, W.S. 2009. The prospects of cellulaseproducing bacteria for the bioconversion of lignocellulosic biomass. Int. J. Biol. Sci. 5, 500-516. 

  33. Menon, V. and Rao, M. 2012. Trends in bioconversion of lignocellulose: Biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522-550. 

  34. Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. 

  35. Park, D.S., Oh, H.W., Jeong, W.J., Kim, H., Park, H.Y., and Bae, K.S. 2007. A culture-based study of the bacterial communities within the guts of nine longicorn beetle species and their exo-enzyme producing properties for degrading xylan and pectin. J. Microbiol. 45, 394-401. 

  36. Reid, N.M., Addison, S.L., Macdonald, L.J., and Lloyd-Jones, G. 2011. Biodiversity of active and inactive bacteria in the gut flora of wood-feeding huhu beetle larvae (Prionoplus reticularis). Appl. Environ. Microbiol. 77, 7000-7006. 

  37. Schauer, C., Thompson, C., and Brune, A. 2014. Pyrotag sequencing of the gut microbiota of the cockroach Shelfordella lateralis reveals a highly dynamic core but only limited effects of diet on community structure. PLoS ONE 9, e85861. 

  38. Schauer, C., Thompson, C.L., and Brune, A. 2012. The bacterial community in the gut of the cockroach Shelfordella lateralis reflects the close evolutionary relatedness of cockroaches and termites. Appl. Environ. Microbiol. 78, 2758-2767. 

  39. Schloss, P.D., Delalibera, I., Handelsman, J., and Raffa, K.F. 2006. Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ. Entomol. 35, 625-629. 

  40. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537-7541. 

  41. Shi, W., Ding, S.Y., and Yuan, J.S. 2011. Comparison of insect gut cellulase and xylanase activity across different insect species with distinct food sources. Bioenerg. Res. 4, 1-10. 

  42. Sims, R.E.H., Mabee, W., Saddler, J.N., and Taylor, M. 2010. An overview of second generation biofuel technologies. Bioresour. Technol. 101, 1570-1580. 

  43. Sudakaran, S., Salem, H., Kost, C., and Kaltenpoth, M. 2012. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol. Ecol. 21, 6134-6151. 

  44. Sun, J.Z. and Scharf, M.E. 2010. Exploring and integrating cellulolytic systems of insects to advance biofuel technology. Insect Sci. 17, 163-165. 

  45. Wang, A.L., Yao, Z.C., Zheng, W.W., and Zhang, H.Y. 2014. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS ONE 9, e106988. 

  46. Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., Cayouette, M., McHardy, A.C., Djordjevic, G., Aboushadi, N., et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560-565. 

  47. Watanabe, H. and Tokuda, G. 2010. Cellulolytic systems in insects. Annu. Rev. Entomol. 55, 609-632. 

  48. Xu, J. and Gordon, J.I. 2003. Honor thy symbionts. Proc. Natl. Acad. Sci. USA 100, 10452-10459. 

  49. Yun, J.H., Roh, S.W., Whon, T.W., Jung, M.J., Kim, M.S., Park, D.S., Yoon, C., Nam, Y.D., Kim, Y.J., Choi, J.H., et al. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80, 5254-5264. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로