$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

아민기가 코팅된 규조토 담체를 이용한 초고온성 고세균 Thermococcus onnurineus의 세포 고정화 및 수소생산 연구
Immobilization of the Hyperthermophilic Archaeon Thermococcus onnurineus Using Amine-coated Silica Material for H2 Production 원문보기

Microbiology and biotechnology letters = 한국미생물·생명공학회지, v.43 no.3, 2015년, pp.236 - 240  

배승섭 (한국해양과학기술원) ,  나정걸 (한국에너지기술연구원) ,  이성목 (한국해양과학기술원) ,  강성균 (한국해양과학기술원) ,  이현숙 (한국해양과학기술원) ,  이정현 (한국해양과학기술원) ,  김태완 (한국해양과학기술원)

초록
AI-Helper 아이콘AI-Helper

초고온성 고세균 Thermococcus onnurineus NA1은 개미산, 일산화탄소, 또는 전분 등을 이용해서 수소를 생산하는 것으로 알려져 있다. 본 연구에서는 T. onnurineus NA1의 고정화 세포를 이용한 수소생산을 고찰하였다. 고정화 실험결과, T. onnurineus NA1은 표면에 아민기가 코팅된 규조토 담체에 정전기적 인력에 의해 효과적으로 고정화되었고, 1 g의 담체에 고정화 될 수 있는 최대 세포의 양은 71.7 mg-dcw로 확인되었다. 고정화 세포를 이용한 세 번의 반복회분식 배양을 통해 개미산으로부터 수소생산 특성을 고찰하였고, 그 결과 배양이 반복됨에 따라 고정화 세포 농도의 증가에 기인하여 초기수소생산속도가 2.3 에서 4.0 mmol l−1 h−1로 상당량 증가됨이 관찰되었다. 따라서, T. onnurineus NA1의 고정화세포 시스템은 수소생산을 위한 좋은 대안이 될 수 있을 것으로 사료된다. 본 연구는 초고온성 고세균의 고정화세포를 수소생산에 적용한 첫 번째 사례이다.

Abstract AI-Helper 아이콘AI-Helper

Previously we reported that the hyperthermophilic archaeon, Thermococcus onnurineus NA1 is capable of producing hydrogen (H2) from formate, CO or starch. In this study, we describe the immobilization of T. onnurineus NA1 as an alternative means of H2 production. Amine-coated silica particles were ef...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

성능/효과

  • 2A, closed circle), showing a reproducible H2 production pattern. It was considered that the increased HPR stemmed mainly from the increased immobilized-cell concentration because the initial amount of immobilized cells per unit g of Kromasil, 10.2 mg-dcw, was much lower than the maximum adsorption capacity of 71.7 mg-dcw per g of support. Thus, the free cells generated during cultivation could also be immobilized onto the support.
  • 04 (at room temperature), much higher than the initial value. Therefore, it will be desirable to undertake immobilized cell culturing with a controlling pH to enhance H2 productivity, which is expected to increase as the batches are repeated until the amount of immobilized cells reaches 71 mg-dcw per g of support, the maximum adsorption capacity.
  • Considering that most bacteria have a net negative surface charge [7] and that T. onnurineus NA1 has been found to grow well under relatively extreme conditions such as a high temperature (80℃) and high salinity (3.5% NaCl) in a medium [3, 4], Kromasil-Amino-NH2, which is a porous silica particle coated with amine groups on its surface and which has good properties such as high mechanical strength, perfectly spherical shape and exceptional chemical stability, was considered to be an appropriate support material.
본문요약 정보가 도움이 되었나요?

참고문헌 (18)

  1. Albers S, Meyer BH. 2011. The archaeal cell envelope. Nat. Rev. Microbiol. 9: 414?426. 

  2. Aragão Börner R, Zaushitsyna O, Berillo D, Scaccia N, Mattiasson B, Kirsebom H. 2014. Immobilization of Clostridium acetobutylicum DSM 792 as macroporous aggregates through cryogelation for butanol production. Process Biochem. 49: 10−18. 

  3. Bae SS, Lee HS, Jeon JH, Lee J-H, Kang SG, Kim TW. 2015. Enhancing bio-hydrogen production from sodium formate by hyperthermophilic archaeon, Thermococcus onnurineus NA1. Bioprocess Biosyst. Eng. 38: 989?993. 

  4. Bae SS, Kim TW, Lee HS, Kwon KK, Kim YJ, Kim MS, et al. 2012. H 2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus. Biotechnol. Lett. 34: 75?79. 

  5. Brányik T, Vicente A, Oliveira R, Teixeira J. 2004. Physicochemical surface properties of brewing yeast influencing their immobilization onto spent grains in a continuous reactor. Biotechnol. Bioeng. 88: 84−93. 

  6. Chang JH, Chang YK, Ryu HW, Chang HN. 2000. Desulfurization of light gas oil in immobilized-cell systems of Gordona sp. CYKS1 and Nocardia sp. CYKS2. FEMS Microbiol. Lett. 182: 309?312. 

  7. Corpe WA. 1970. Attachment of marine bacteria to solid surfaces, pp. 73?87. In R. S. Manly (ed.), Adhesion in biological system, Academic Press, New York. 

  8. Guoqiang D, Kaul R, Mattiasson B. 1992. Immobilization of Lactobacillus casei cells to ceramic material pretreated with polyethylenimine. Appl. Microbiol. Biotechnol. 37: 305?310. 

  9. Keller MW, Schut GJ, Lipscomb GL, Menon AL, Iwuchukwu IJ, Leuko TT, et al. 2013. Exploiting microbial hyperthermophilicity to produce an industrial chemical, using hydrogen and carbon dioxide. Proc. Natl. Acad. Sci. 110: 5840?5845. 

  10. Kengen SWM, Stams AJM. 1994. Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161: 168?175. 

  11. Kim MS, Bae SS, Kim YJ, Kim TW, Lim JK, Lee SH, et al. 2013. CO-dependent H 2 producion by genetically engineered Thermococcus onnurineus NA1. Appl. Environ. Microbiol. 79: 2048?2053. 

  12. Klibanov AM. 2001. Improving enzymes by using them in organic solvents. Nature 409: 241?246. 

  13. Kourkoutas Y, Bekatorou A, Banat IM, Marchantb R, Koutinasa AA. 2004. Immobilization technologies and support materials suitable in alcohol beverages production: A review. Food Microbiol. 21: 377?397. 

  14. Kuyukina MS, Korshunova IO, Rubtsova EV, Ivshina IB. 2013. Methods of microorganism immobilization for dynamic atomicforce studies (review). Appl. Biochem. Microbiol. 50: 1?9. 

  15. Lim JK, Bae SS, Kim TW, Lee J, Lee HS, Kang SG. 2012. Thermodynamics of formate-oxidizing metabolism and implications for H 2 production. Appl. Environ. Microbiol. 78: 7393?7397. 

  16. Santangelo TJ, Cuboňová L, Reeve JN. 2011. Deletion of alternative pathways for reductant recycling in Thermococcus kodakarensis increases hydrogen production. Mol. Microbiol. 81: 897?911. 

  17. Shin JH, Yoon JH, Lee SH, Park TH. 2010. Hydrogen production from formic acid in pH-stat fed-batch operation for direct supply to fuel cell. Bioresour. Technol. 101: s53?s58. 

  18. Yoshida A, Nishimura T, Kawaguchi H, Inui M, Yukawa H. 2005. Enhanced hydrogen production from formic acid by formate hydrogen lyase-overexpressing Escherichia coli strains. Appl. Environ. Microbiol. 71: 6762?6768. 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로