$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

웨어러블 텍스타일 스트레인 센서 리뷰
Wearable Textile Strain Sensors 원문보기

Fashion & textile research journal = 한국의류산업학회지, v.18 no.6, 2016년, pp.733 - 745  

노정심 (상명대학교 의류학과)

Abstract AI-Helper 아이콘AI-Helper

This paper provides a review of wearable textile strain sensors that can measure the deformation of the body surface according to the movements of the wearer. In previous studies, the requirements of textile strain sensors, materials and fabrication methods, as well as the principle of the strain se...

주제어

질의응답

핵심어 질문 논문에서 추출한 답변
건강한 라이프 스타일을 지향하는 현대인들의 요구에 따라질병의 치료뿐 아니라 사전 관리와 진단과 예방의 중요성이 대두되면서 개발되고 있는 프로그램은 무엇인가? 건강한 라이프 스타일을 지향하는 현대인들의 요구에 따라질병의 치료뿐 아니라 사전 관리와 진단과 예방의 중요성이 대두되면서, ECG, 심박, 호흡, 체온, 모션 등의 인체정보를 모니터링(physiological monitoring)하여 높은 수준의 건강을 유지하게 하는 적극적인 프로그램들이 전세계적으로 개발되고 있다. 의복은 사용자의 다양한 활동 정보를 언제 어디서나 지속적으로 센싱(ubiquitous sensing)하여 스포츠와 헬스 케어 분야의거대한 활용으로 연결시킬 수 있는 가장 이상적인 플랫폼이다(Mattmann et al.
텍스타일로 만들어진 스트레인 센서의 활용 가능 분야는? 텍스타일이 가지는 신축성(stretchability)이란 인체의 불균일하고 복잡한 형태를 자연스럽게 커버하고 지속적인 움직임에 순응할 수 있는 능력(conformability)이다. 가슴둘레나 배에 위치한 텍스타일 스트레인 센서는 호흡 시 가슴둘레와 배둘레의 길이변화를 측정하여 자연스럽게 호흡수를 측정할 수 있다(Campbell et al., 2007; Paradiso et al., 2005; Zhang et al., 2006). 특히 텍스타일 기반의 웨어러블 동작 센싱 기술은기존의 룸에 설치된 동작 센싱 장비에서는 생각할 수도 없었던 새로운 적용들을 가능하게 한다. 피트니스 트레이닝 시에 운동수행의 양과 질을 측정할 수 있고, 개개인의 재활운동을 위한프로그램에 활용되어(Giorgino et al., 2009) 개인 맞춤형의 완전히 새로운 용도들로 전개될 수도 있다.
텍스타일로 만들어진 스트레인 센서가 휴먼인터페이스 기술의 핵심기술인 이유는 무엇인가? 가볍고 유연하며 신축성이 있는 텍스타일로 만들어진 스트레인 센서(textile strain sensors)는 사용자에게 불편함이 없이 오래도록 착용되어 호흡이나 모션 등과 관련한 데이터를 지속적으로 수집할 수 있도록 하기 때문에 휴먼 인터페이스 기술(human-interface technology)의 핵심기술이 되고 있다(Bae et al., 2013).
질의응답 정보가 도움이 되었나요?

참고문헌 (53)

  1. Alexopoulos, N. D., Bartholome, C., Poulin, P., & Marioli-Riga, Z. (2010). Structural health monitoring of glass fiber reinforced composites using embedded carbon nanotube (CNT) fibers. Composites Science and Technology, 70(2), 260-271. doi:10.1016/j.compscitech.2009.10.017 

  2. Atalay, O., Kennon, W. R., & Husain, M. D. (2013). Textile-based weft knitted strain sensors: Effect of fabric parameters on sensor properties. Sensors, 13(8), 11114-11127. doi:10.3390/s130811114 

  3. Bae, S. H., Lee, Y., Sharma, B. K., Lee, H. J., Kim, J. H., & Ahn, J. H. (2013). Graphene-based transparent strain sensor. Carbon, 51, 236-242. doi:10.1016/j.carbon.2012.08.048 

  4. Balberg, I., & Binenbaum, N. (1987). Invariant properties of the percolation thresholds in the soft-core-hard-core transition. Physical Review A, 35(12), 5174. doi:org/10.1103/PhysRevA.35.5174 

  5. Barlow, D. H., Becker, R., Leitenberg, H., & Agras, W. S. (1970). A mechanical strain gauge for recording penile circumference change. Journal of Applied Behavior Analysis, 3(1), 73-76. doi:10.1901/jaba.1970.3-73 

  6. Bashir, T., Ali, M., Cho, S. W., Persson, N. K., & Skrifvars, M. (2013). OCVD polymerization of PEDOT: Effect of pre-treatment steps on PEDOT-coated conductive fibers and a morphological study of PEDOT distribution on textile yarns. Polymers for Advanced Technologies, 24(2), 210-219. doi:10.1002/pat.3073 

  7. Bashir, T., Ali, M., Persson, N. K., Ramamoorthy, S. K., & Skrifvars, M. (2014). Stretch sensing properties of conductive knitted structures of PEDOT-coated viscose and polyester yarns. Textile Research Journal, 84(3), 323-334. doi:10.1177/0040517513494253 

  8. Bartlett, P. N., & Lingchung, S. K. (1989). Conducting polymer gas sensors part II: response of polypyrrole to methanol vapour. Sensors and Actuators, 19, 141-150. doi:10.1016/0250-6874(89)80127-1 

  9. Bilotti, E., Zhang, R., Deng, H., Baxendale, M., & Peijs, T. (2010). Fabrication and property prediction of conductive and strain sensing TPU/CNT nanocomposite fibres. Journal of Materials Chemistry, 20(42), 9449-9455. doi:10.1039/C0JM01827A 

  10. Borsenberger, P. M., & Bassler, H. (1991). Concerning the role of dipolar disorder on charge transport in molecularly doped polymers. The Journal of Chemical Physics, 95(7), 5327-5331. doi:10.1063/1.461646 

  11. Calvert, P., Duggal, D., Patra, P., Agrawal, A. P., & Sawhney, A. (2008). Conducting polymer and conducting composite strain sensors on textiles. Molecular Crystals and Liquid Crystals, 484(1), 291-657. doi:10.1080/15421400801904690 

  12. Campbell, T. E., Munro, B. J., Wallace, G. G., & Steele, J. R. (2007). Can fabric sensors monitor breast motion?. Journal of Biomechanics, 40(13), 3056-3059. doi:10.1016/j.jbiomech.2007.01.020 

  13. Catrysse, M., Puers, R., Hertleer, C., Van Langenhove, L., Van Egmond, H., & Matthys, D. (2004). Towards the integration of textile sensors in a wireless monitoring suit. Sensors and Actuators A: Physical, 114(2), 302-311. doi:10.1016/j.sna.2003.10.071 

  14. Cochrane, C., Koncar, V., Lewandowski, M., & Dufour, C. (2007). Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors, 7(4), 473-492. doi:10.3390/s7040473 

  15. Daoud, W. A., Xin, J. H., & Szeto, Y. S. (2005). Polyethylenedioxythiophene coatings for humidity, temperature and strain sensing polyamide fibers. Sensors and Actuators B: Chemical, 109(2), 329-333. doi:10.1016/j.snb.2004.12.067 

  16. Giorgino, T., Tormene, P., Lorussi, F., De Rossi, D., & Quaglini, S. (2009). Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 17(4), 409-415. doi:10.1109/TNSRE.2009.2019584 

  17. Kaiser, A. B., Flanagan, G. U., Stewart, D. M., & Beaglehole, D. (2001). Heterogeneous model for conduction in conducting polymers and carbon nanotubes. Synthetic Metals, 117(1), 67-73. doi:10.1016/S0379-6779(00)00540-3 

  18. Kim, Y. J., Cha, J. Y., Ham, H., Huh, H., So, D. S., & Kang, I. (2011). Preparation of piezoresistive nano smart hybrid material based on graphene. Current Applied Physics, 11(1), S350-S352. doi:10.1016/j.cap.2010.11.022 

  19. Kinkeldei, T., Zysset, C., Cherenack, K. H., & Troster, G. (2011). A textile integrated sensor system for monitoring humidity and temperature. In Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International (pp. 1156-1159). Beijing, China, IEEE. doi:10.1109/TRANSDUCERS.2011.5969238 

  20. Ku?, M., & Okur, S. (2009). Electrical characterization of PEDOT: PSS beyond humidity saturation. Sensors and Actuators B: Chemical, 143(1), 177-181. doi:10.1016/j.snb.2009.08.055 

  21. Lee, J. H., Kim, S. H., Lee, J. J., Yang, D. J., Park, B. C., Ryu, S. H., & Park, I. K. (2014). A stretchable strain sensor based on a metal nanoparticle thin film for human motion detection. Nanoscale, 6(20), 11932-11939. doi:10.1039/C4NR03295K 

  22. Li, X., Zhang, R., Yu, W., Wang, K., Wei, J., Wu, D., Cao, A., Li, Z., Cheng, Y., Zheng, Q., & Ruoff, R. S. (2012). Stretchable and highly sensitive graphene-on-polymer strain sensors. Scientific Reports, 2, 870. doi:10.1038/srep00870 

  23. Li, Q., Kim, N. H., Yoo, G. H., & Lee, J. H. (2009). Positive temperature coefficient characteristic and structure of graphite nanofibers reinforced high density polyethylene/carbon black nanocomposites. Composites Part B: Engineering, 40(3), 218-224. doi:10.1016/j.compositesb.2008.11.002 

  24. Li, Y., Cheng, X. Y., Leung, M. Y., Tsang, J., Tao, X. M., & Yuen, M. C. W. (2005). A flexible strain sensor from polypyrrole-coated fabrics. Synthetic Metals, 155(1), 89-94. doi:10.1016/j.synthmet.2005.06.008 

  25. Liu, L., Ye, X., Wu, K., Han, R., Zhou, Z., & Cui, T. (2009). Humidity sensitivity of multi-walled carbon nanotube networks deposited by dielectrophoresis. Sensors, 9(3), 1714-1721. doi:10.3390/s90301714 

  26. Lorussi, F., Rocchia, W., Scilingo, E. P., Tognetti, A., & De Rossi, D. (2004). Wearable, redundant fabric-based sensor arrays for reconstruction of body segment posture. IEEE Sensors Journal, 4(6), 807-818. doi:10.1109/JSEN.2004.837498 

  27. Mattmann, C., Amft, O., Harms, H., Troster, G., & Clemens, F. (2007). Recognizing upper body postures using textile strain sensors. In 2007 11th IEEE International Symposium on Wearable Computers (pp. 29-36). Boston, MA, USA, IEEE. doi:10.1109/ISWC.2007.4373773 

  28. Mattmann, C., Clemens, F., & Troster, G. (2008). Sensor for measuring strain in textile. Sensors, 8(6), 3719-3732. doi:10.3390/s8063719 

  29. Munro, B. J., Campbell, T. E., Wallace, G. G., & Steele, J. R. (2008). The intelligent knee sleeve: A wearable biofeedback device. Sensors and Actuators B: Chemical, 131(2), 541-547. doi:10.1016/j.snb.2007.12.041 

  30. Paradiso, R., Loriga, G., & Taccini, N. (2005). A wearable health care system based on knitted integrated sensors. Information Technology in Biomedicine, IEEE Transactions on, 9(3), 337-344. doi:10.1109/TITB.2005.854512 

  31. Pati, R., Zhang, Y., Nayak, S. K., & Ajayan, P. M. (2002). Effect of $H_2O$ adsorption on electron transport in a carbon nanotube. Applied Physics Letters, 81, 2638. doi:10.1063/1.1510969 

  32. Perc, B., Kuscer, D., Holc, J., Belavic, D., Jerlah, M., Svetec, D. G., & Kosec, M. (2009, September). Thick-film strain sensor on textile. In Proceeding of 45th International Conference on Microelectronics, Devices and Materials, pp. 9-11. 

  33. Ramanavicius, A., Ramanaviciene, A., & Malinauskas, A. (2006). Electrochemical sensors based on conducting polymer-polypyrrole. Electrochimica Acta, 51(27), 6025-6037. doi:10.1016/j.electacta.2005.11.052 

  34. Roh, J. S., & Kim, S. R. (2016). All-fabric intelligent temperature regulation system for smart clothing applications. Journal of Intelligent Material Systems and Structures, 27(9), 1165-1175. doi:10.1177/1045389X15585901. 

  35. Robert, C., Feller, J. F., & Castro, M. (2012). Sensing skin for strain monitoring made of PC-CNT conductive polymer nanocomposite sprayed layer by layer. ACS Applied Materials & Interfaces, 4(7), 3508-3516. doi:10.1021/am300594t 

  36. Scilingo, E. P., Lorussi, F., Mazzoldi, A., & De Rossi, D. (2003). Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors Journal, 3(4), 460-467. doi:10.1109/JSEN.2003.815771 

  37. Shyr, T. W., Shie, J. W., Jiang, C. H., & Li, J. J. (2014). A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements. Sensors, 14(3), 4050-4059. doi:10.3390/s140304050 

  38. Strazdiene, E., Blazevic, P., Vegys, A., & Dapkuniene, K. (2015). New tendencies of wearable electronics application in smart clothing. Electronics and Electrical Engineering, 73(1), 21-24. 

  39. Taccola, S., Greco, F., Zucca, A., Innocenti, C., de Julian Fernandez, C., Campo, G., Sangregorio, C., Mazzolai, B., & Mattoli, V. (2013). Characterization of free-standing PEDOT: PSS/iron oxide nanoparticle composite thin films and application as conformable humidity sensors. ACS Applied Materials & Interfaces, 5(13), 6324-6332. doi:10.1021/am4013775 

  40. Taya, M., Kim, W. J., & Ono, K. (1998). Piezoresistivity of a short fiber/elastomer matrix composite. Mechanics of Materials, 28(1), 53-59. doi:10.1016/S0167-6636(97)00064-1 

  41. Ueda, N., & Taya, M. (1986). Prediction of the electrical conductivity of two?dimensionally misoriented short fiber composites by a percolation model. Journal of Applied Physics, 60(1), 459-461. doi:10.1063/1.337778. 

  42. Wang, J., Long, H., Soltanian, S., Servati, P., & Ko, F. (2014). Electromechanical properties of knitted wearable sensors: Part 2-Parametric study and experimental verification. Textile Research Journal, 84(2), 200-213. doi:10.1177/0040517513490057. 

  43. Wang, X., & Chung, D. D. L. (1995). Short-carbon-fiber-reinforced epoxy as a piezoresistive strain sensor. Smart Materials and Structures, 4(4), 363. doi:10.1088/0964-1726/4/4/017 

  44. Xiang, Z. D., Chen, T., Li, Z. M., & Bian, X. C. (2009). Negative temperature coefficient of resistivity in lightweight conductive carbon nanotube/polymer composites. Macromolecular Materials and Engineering, 294(2), 91-95. doi:10.1002/mame.200800273 

  45. Xiong, C., Zhou, Z., Xu, W., Hu, H., Zhang, Y., & Dong, L. (2005). Polyurethane/carbon black composites with high positive temperature coefficient and low critical transformation temperature. Carbon, 43(8), 1788-1792. doi:10.1016/j.carbon.2005.02.001 

  46. Xue, P., Tao, X. M., Kwok, K. W., Leung, M. Y., & Yu, T. X. (2004). Electromechanical behavior of fibers coated with an electrically conductive polymer. Textile Research Journal, 74(10), 929-936. doi:10.1177/004051750407401013 

  47. Xue, P., Tao, X. M., & Tsang, H. Y. (2007). In situ SEM studies on strain sensing mechanisms of PPy-coated electrically conducting fabrics. Applied Surface Science, 253(7), 3387-3392. doi:10.1016/j.apsusc.2006.07.003 

  48. Yamada, T., Hayamizu, Y., Yamamoto, Y., Yomogida, Y., Izadi-Najafabadi, A., Futaba, D. N., & Hata, K. (2011). A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 6(5), 296-301. doi:10.1038/nnano.2011.36 

  49. Yi, W., Wang, Y., Wang, G., & Tao, X. (2012). Investigation of carbon black/silicone elastomer/dimethylsilicone oil composites for flexible strain sensors. Polymer Testing, 31(5), 677-684. doi:10.1016/j.polymertesting.2012.03.006 

  50. Yu, H., Cao, T., Zhou, L., Gu, E., Yu, D., & Jiang, D. (2006). Layer-by-layer assembly and humidity sensitive behavior of poly (ethyleneimine)/multiwall carbon nanotube composite films. Sensors and Actuators B: Chemical, 119(2), 512-515. doi:10.1016/j.snb.2005.12.048 

  51. Zhang, H., Tao, X., Yu, T., & Wang, S. (2006). Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators A: Physical, 126(1), 129-140. doi:10.1016/j.sna.2005.10.026 

  52. Zhang, R., Deng, H., Valenca, R., Jin, J., Fu, Q., Bilotti, E., & Peijs, T. (2013). Strain sensing behaviour of elastomeric composite films containing carbon nanotubes under cyclic loading. Composites Science and Technology, 74, 1-5. doi:10.1016/j.compscitech.2012.09.016 

  53. Zhang, R., Deng, H., Valenca, R., Jin, J., Fu, Q., Bilotti, E., & Peijs, T. (2012). Carbon nanotube polymer coatings for textile yarns with good strain sensing capability. Sensors and Actuators A: Physical, 179, 83-91. doi:10.1016/j.sna.2012.03.029 

저자의 다른 논문 :

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로