부영양화를 일으키는 대표적인 영양물질인 질소와 인을 제거하기 위하여 많은 연구들이 진행되어오고 있다. 본 연구에서는 질소와 인을 제거하기 위하여 해수 및 해수염에 존재하는 마그네슘과 칼슘을 사용하여 스트루바이트와 수산화인회석을 만들어 침전을 시켰다. 실험의 목적은 해수와 해수염을 사용하여 pH와 농도의 변화에 따른 영양염의 제거율을 비교평가 하였다. 하수의 실험조건에서 해수를 사용한 결과 인의 제거율은 90 %, 질소의 제거율은 50 %로 나타났다. 또한 pH 9, 질소와 인의 농도 10 mM, ${Mg/PO_4}^{3-}$, ${NH_4}^+$의 비율 2의 조건에서 해수염을 사용하여 실험한 결과 질소의 제거율은 90 %, 인의 제거율은 70 %로 나타났다. 상대적으로 인의 제거율이 높은 이유는 해수를 사용한 경우 질소와 인의 몰 농도의 차이에서 비롯되었으며, 해수염을 사용한 경우 해수에 포함된 칼슘이 인과 반응하여 수산화인회석으로 침전 제거되었다고 할 수 있다. 수중의 질소와 인을 제거를 위하여 해수와 해수염을 사용한 결과 높은 제거율을 나타내었다.
부영양화를 일으키는 대표적인 영양물질인 질소와 인을 제거하기 위하여 많은 연구들이 진행되어오고 있다. 본 연구에서는 질소와 인을 제거하기 위하여 해수 및 해수염에 존재하는 마그네슘과 칼슘을 사용하여 스트루바이트와 수산화인회석을 만들어 침전을 시켰다. 실험의 목적은 해수와 해수염을 사용하여 pH와 농도의 변화에 따른 영양염의 제거율을 비교평가 하였다. 하수의 실험조건에서 해수를 사용한 결과 인의 제거율은 90 %, 질소의 제거율은 50 %로 나타났다. 또한 pH 9, 질소와 인의 농도 10 mM, ${Mg/PO_4}^{3-}$, ${NH_4}^+$의 비율 2의 조건에서 해수염을 사용하여 실험한 결과 질소의 제거율은 90 %, 인의 제거율은 70 %로 나타났다. 상대적으로 인의 제거율이 높은 이유는 해수를 사용한 경우 질소와 인의 몰 농도의 차이에서 비롯되었으며, 해수염을 사용한 경우 해수에 포함된 칼슘이 인과 반응하여 수산화인회석으로 침전 제거되었다고 할 수 있다. 수중의 질소와 인을 제거를 위하여 해수와 해수염을 사용한 결과 높은 제거율을 나타내었다.
An excess in the nutrients such as nitrogen and phosphate leads to a phenomenon called eutrophication. In order to avoid this, numerous methods have been used to remove excess nutrients in the water. In this study, the use of a chemical method was assessed through the formation of magnesium ammonium...
An excess in the nutrients such as nitrogen and phosphate leads to a phenomenon called eutrophication. In order to avoid this, numerous methods have been used to remove excess nutrients in the water. In this study, the use of a chemical method was assessed through the formation of magnesium ammonium phosphate. The difference in the removal efficiency of seawater and sea salt solution as primary sources of $Mg^{2+}$ ions and $Ca^{2+}$ ions for the formation of magnesium ammonium phosphate (MAP) and hydroxyapatite (HAP) respectively, were observed, taking into account the changes in pH and concentration. The results showed that seawater removed about 90 % phosphate and less than 50 % ammonia in sewage water condition, whereas the sea salt solution removed almost 90 % phosphate and 70 % ammonia in solution at pH 9 and 10 mM concentration of sea salt which further increases as the optimum ${Mg/PO_4}^{3-}$, ${NH_4}^+$ ratio reaches 2. The difference in the removal efficiency of seawater and sea salt was due to the fact that the set-ups were prepared in different conditions. This study suggests that both seawater and sea salt can be used to remove nutrients from the water. The relatively higher removal of phosphate can be explained by the formation of HAP from free $Ca^{2+}$ ions initially present in seawater and sea salt solution.
An excess in the nutrients such as nitrogen and phosphate leads to a phenomenon called eutrophication. In order to avoid this, numerous methods have been used to remove excess nutrients in the water. In this study, the use of a chemical method was assessed through the formation of magnesium ammonium phosphate. The difference in the removal efficiency of seawater and sea salt solution as primary sources of $Mg^{2+}$ ions and $Ca^{2+}$ ions for the formation of magnesium ammonium phosphate (MAP) and hydroxyapatite (HAP) respectively, were observed, taking into account the changes in pH and concentration. The results showed that seawater removed about 90 % phosphate and less than 50 % ammonia in sewage water condition, whereas the sea salt solution removed almost 90 % phosphate and 70 % ammonia in solution at pH 9 and 10 mM concentration of sea salt which further increases as the optimum ${Mg/PO_4}^{3-}$, ${NH_4}^+$ ratio reaches 2. The difference in the removal efficiency of seawater and sea salt was due to the fact that the set-ups were prepared in different conditions. This study suggests that both seawater and sea salt can be used to remove nutrients from the water. The relatively higher removal of phosphate can be explained by the formation of HAP from free $Ca^{2+}$ ions initially present in seawater and sea salt solution.
* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.
제안 방법
All samples were obtained after 30 minutes and later filtered through 0.45 µm pore size membrane filter and were subjected to Phenate and Ascorbic acid methods for ammonia and phosphate, respectively.
Samples were assumed to contain negligible amount of nutrients. In order to determine the effects of MG2+ concentration, four volumes of seawater were tested; 25, 50, 75 and 100 mL in a 500 mL total sample volume. Experiments were carried out in an ambient laboratory temperature with a jar tester.
45 µm pore size membrane filter. The filtrates were then analyzed for ammonia and phosphate using Phenate method for Ammonia and Ascorbic acid method for Phosphate under a UV-Vis Spectrophotometer at 630 nm and 880 nm, respectively. To test for the removal at equal molar ratio, stock solutions of NH4Cl and KH2PO4 were prepared at 1000 mM NH4+-N and 1000 mM PO43--P, correspondingly.
5, 1, 2, and 5 at the same pH 9. The mixtures were agitated using a magnetic stirrer and were allowed to react for 24 hours before the decanted liquid was subjected to Phenate method and Ascorbic acid method under a UV-Vis Spectrophotometer for ammonia and phosphate, respectively.
참고문헌 (13)
Atkinson, M. and C. Bingman(2000), Elemental Composition of Commercial Salts, Journal of Aquaculture and Aquatic Sciences, Vol. 8, No. 2, pp. 39-43.
Bouropoulos, N. and P. Koutsoukos(1999), Spontaneous Precipitation of Struvite From Aqueous Solutions, Journal of Crystal Growth, Vol. 213, No. 3-4, pp. 777-782.
Doyle, J. and S. Parsons(2002), Struvite Formation, Control and Recovery, Water Research, Vol. 36, pp. 3925-3940.
Fattah, K. P. and D. S. Mavinic(2011), Modeling and Optimization of Struvite Precipitation Process for Phosphorous Recovery From Wastewater, Vancouver: Research Gate.
Hao, X., C. Wang, L. Lan and M. van Loosdrecht(2008), Struvite formation, analytical methods and effects of pH and $Ca^{2+}$ , Journal of Water Sci. Technology, pp. 1687-1692.
Jaffer, A., T. Clark, P. Pearce and S. Parsons(2002), Potential Phosphorous Recovery By Struvite Formation, Water Research, Vol. 36, pp. 1834-1842.
Lee, S. I., S. Y. Weon, C. Lee and B. Koopman(2002), Removal of Nitrogen and Phosphate From Wastewater by Addition of Bittern, Journal of Chemosphere, Vol. 51, pp. 265-271.
Lin, S. and L. W. Chang(1996), Removal of Nitrogenous Compounds From Aqueous Solution by Ozonation and Ion Exchange, Water Research, Vol. 95, pp. 1851-1857.
Matsumiya, Y., T. Yamasita and Y. Nawamura(2000), Phosphorous Removal from Sidestreams by Crystallisation of Magnesium Ammonium Phosphate Using Seawater, J.CIWEM, pp. 291-296.
Shin, H. and S. M. Lee(1997), Removal of Nutrients in Wastewater By Using Magnesium Salts, Journal of Environmental Technology, pp. 283-290.
Stratful, I., M. Scrimshaw and J. Lester(2001), Conditions Influencing the Precipitation of Magnesium Ammonium Phosphate, Water Research, Vol. 35, No. 17, pp. 4191-4199.
Vohra, M. S. and S. Selimuzzaman(2010), $NH_4\;^{+}$ - $NH_3$ removal from Simulated Wastewater using UV- $TiO_2$ Photocatalysis: Effect of copollutants and pH, Journal of Environmental Technology, Vol. 31, No. 6, pp. 641-654.
Yu, R., H. Ren, Y. Wang, L. Ding, J. Geng and K. Xu(2013), A Kinetic Study Of Struvite Precipitation Recycling Technology with NaOH/ $MgOH_2$ addition, Journal of BioResource Technology, Vol. 143, pp. 519-524.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.