$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method 원문보기

Algae, v.31 no.4, 2016년, pp.391 - 401  

Park, Jaeyeon (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ,  Jeong, Hae Jin (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ,  Yoon, Eun Young (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ,  Moon, Seung Joo (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology)

Abstract AI-Helper 아이콘AI-Helper

To develop an easy and rapid method of quantifying lipid contents of marine dinoflagellates, we quantified lipid contents of common dinoflagellate species using a colorimetric method based on the sulpho-phospho-vanillin reaction. In this method, the optical density measured using a spectrophotometer...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • After analyzing lipid content using the SPV method, the lipid content data analyzed for each cell number was calculated using the standard curve, and the lipid content of individual cells was calculated. A t-test and ANOVA were performed to determine if the lipid content of individual cells has any significant difference with the lipid content of the individual cells calculated for each different cell number.
  • In this study, we applied a modified SPV method for quantifying the lipid content of dinoflagellate species. Furthermore, using this method, we analyzed the lipid content of 9 dinoflagellate species including phototrophic, mixotrophic and heterotrophic species (Amphidinium carterae, Heterocapsa triquetra, Prorocentrum minimum, Alexandrium minutum, Oxyrrhis marina, Scrippsiella trochoidea, Ostreopsis cf.
  • The direct measurement of lipid content using the SPV reaction in this study was modified from the Inouye and Lotufo protocol (Inouye and Lotufo 2006); in this method, 0.2 mL sample, 0.1 mL sulfuric acid, and 2.4 mL vanillin reagent (1.2 mg vanillin per milliliter of 68% phosphoric acid) were used.
  • This research was supported by Developing the method of converting food wastes to bioenergy using mass cultured marine protozoa, and the programs “Management of Marine Organisms causing Ecological Disturbance and Harmful Effects” to J. Park and “Useful Dinoflagellate” funded by KIMST/MOF to HJJ.

대상 데이터

  • Vanillin (≥98%) was purchased from Sigma-Aldrich (St. Louis, MO, USA).

데이터처리

  • The optical density measured using a spectrophotometer (and equivalent intensity of color) was significantly positively correlated with the known lipid content of the standard oil (i.e., Canola oil) (p < 0.01, linear regression ANOVA) (Fig. 1).
  • When the lipid contents of the dinoflagellates A. minutum, P. micans, P. minimum, and L. polyedrum were calculated using the standard curve, the lipid amount of each species was also significantly positively correlated with optical density and equivalent intensity of color (p < 0.01 for each of all 4 species, linear regression ANOVA) (Fig. 2).

이론/모형

  • Lipid content (LC, μg lipid) and cell numbers of Prorocentrum minimum (A), Alexandrium minutum (B), P. micans (C), and Lingulodinium polyedrum (D) as a function of the optical density (OD) obtained from samples when measured using the sulpho-phospho-vanillin method.
  • Lipid content per cell (LCPC, ng lipid cell-1) of all 11 species (A), the dinoflagellates only (B), and planktonic dinoflagellates only (C) as a function of cell size (equivalent spherical diameter, ESD, μm) when measured using the sulpho-phospho-vanillin method.
  • 7. Lipid content per cell (LCPC, ng lipid cell-1) of all 11 species as a function of the specific growth rate (GR, d-1) when measured using the sulpho-phospho-vanillin method. The equation of the curve was y (LCPC) = -0.
  • 4. Lipid content per cell (ng lipid cell-1) of the 11 experimental species tested when measured using the sulpho-phospho-vanillin method. Bars represent treatment means ± standard deviation (n = 3).
  • 1981), as well as in serum, food, and ecological samples. The SPV assay produces a distinct pink color when reacting with lipids, and the intensity of the color can be quantified by measuring the absorbance at 530 nm using spectrophotometric methods. The advantages of this technique are that it is able to measure lipid content rapidly and simply and requires only a small amount of target sample.
  • Volume specific lipid content per cell (VLCPC, pg lipid cell-1) of all 11 species (A) and the dinoflagellates only (B) as a function of cell size (ESD, μm) when measured using the sulpho-phosphovanillin method.
본문요약 정보가 도움이 되었나요?

참고문헌 (40)

  1. Anderson, D. M. 1997. Turning back the harmful red tide. Nature 388:513-514. 

  2. Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917. 

  3. Byreddy, A. R., Gupta, A., Barrow, C. J. & Puri, M. 2016. A quick colorimetric method for total lipid quantification in microalgae. J. Microbiol. Methods 125:28-32. 

  4. Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409. 

  5. Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process 48:1146-1151. 

  6. Costas, E. 1990. Genetic variability in growth rates of marine dinoflagellates. Genetica 82:99-102. 

  7. de la Jara, A., Mendoza, H., Martel, A. Molina, C., Nordstron, L., de la Rosa, V. & Diaz, R. 2003. Flow cytometric determination of lipid content in a marine dinoflagellate, Crypthecodinium cohnii. J. Appl. Phycol. 15:433-438. 

  8. Doan, T. T. Y., Sivaloganathan, B. & Obbard, J. P. 2011. Screening of marine microalgae for biodiesel feedstock. Biomass Bioenergy 35:2534-2544. 

  9. Drevon, B. & Schmit, J. M. 1964. La reaction sulpho-phospho-vanillique dans l'etude des lipides seriques. Bull. Trav. Soc. Pharm. Lyon 8:173-178. 

  10. Eppley, R. W. & Sloan, P. R. 1966. Growth rates of marine phytoplankton: correlation with light absorption by cell chlorophyll a. Physiol. Plant. 19:47-59. 

  11. Folch, J., Lees, M. & Sloane Stanley, G. H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497-509. 

  12. Fuentes-Grunewald, C., Bayliss, C., Fonlut, F. & Chapuli, E. 2016. Long-term dinoflagellate culture performance in a commercial photobioreactor: Amphidinium carterae case. Bioresour. Technol. 218:533-540. 

  13. Fuentes-Grunewald, C., Garces, E., Alacid, E., Sampedro, N., Rossi, S. & Camp, J. 2012. Improvement of lipid production in the marine strains Alexandrium minutum and Heterosigma akashiwo by utilizing abiotic parameters. J. Ind. Microbiol. Biotechnol. 39:207-216. 

  14. Fuentes-Grunewald, C., Garces, E., Rossi, S. & Camp, J. 2009. Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J. Ind. Microbiol. Biotechnol. 36:1215-1224. 

  15. Furnas, M. J. 1990. In situ growth rates of marine phytoplankton: approaches to measurement, community and species growth rates. J. Plankton Res. 12:1117-1151. 

  16. Grzebyk, D., Bechemin, C., Ward, C. J., Verite, C., Codd, G. A. & Maestrini, S. Y. 2003. Effects of salinity and two coastal waters on the growth and toxin content of the dinoflagellate Alexandrium minutum. J. Plankton Res. 25:1185-1199. 

  17. Guerrini, F., Pezzolesi, L., Feller, A., Riccardi, M., Ciminiello, P., Dell'Aversano, C., Tartaglione, L., Dello Iacovo, E., Fattorusso, E., Forino, M. & Pistocchi, R. 2010. Comparative growth and toxin profile of cultured Ostreopsis ovata from the Tyrrhenian and Adriatic Seas. Toxicon 55:211-220. 

  18. Guillard, R. R. L. & Ryther, J. H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239. 

  19. Hallegraeff, G. M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32:79-99. 

  20. Hansen, P. J. 1992. Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar. Biol. 114:327-334. 

  21. Hao, Z., Liu, P., Yang, X., Shi, J. & Zhang, S. 2013. Screening method for lipid-content microalgae based on sulpho-phospho-vanillin reaction. Adv. Mater. Res. 610-613:3532-3535. 

  22. Inouye, L. S. & Lotufo, G. R. 2006. Comparison of macrogravimetric and micro-colorimetric lipid determination methods. Talanta 70:584-587. 

  23. Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285. 

  24. Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609. 

  25. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. 

  26. Jeong, H. J., Yoo, Y. D., Park, J. Y., Song, J. Y., Kim, S. T., Lee, S. H., Kim, K. Y. & Yih, W. H. 2005. Feeding by phototrophic red-tide dinoflagellates: five species newly revealed and six species previously known to be mixotrophic. Aquat. Microbial Ecol. 40:133-150. 

  27. Kagami, M. & Urabe, J. 2001. Phytoplankton growth rate as a function of cell size: an experimental test in Lake Biwa. Limnology 2:111-117. 

  28. Kondo, K., Seike, Y. & Date, Y. 1990. Red tides in the brackish Lake Nakanoumi (II). Relationships between the occurrence of Prorocentrum minimum red tide and environmental conditions. Bull. Plankton Soc. Jpn. 37:19-34. 

  29. Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014a. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. 

  30. Lee, S. K., Jeong, H. J., Jang, S. H., Lee, K. H., Kang, N. S., Lee, M. J. & Potvin, E. 2014c. Mixotrophy in the newly described dinoflagellate Ansanella granifera: feeding mechanism, prey species, and effect of prey concentration. Algae 29:137-152. 

  31. Lee, S. Y., Jeong, H. J., Kang, N. S., Jang, T. Y., Jang, S. H. & Lim, A. S. 2014b. Morphological characterization of Symbiodinium minutum and S. psygmophilum belonging to clade B. Algae 29:299-310. 

  32. Malapascua, J. R., Chou, H.-N., Lu, W.-J. & Lan, J. C.-W. 2012. Development of an indirect method of microalgal lipid quantification using a lysochrome dye, Nile red. Afr. J. Biotechnol. 11:13518-13527. 

  33. Mansour, M. P., Volkman, J. K., Jackson, A. E. & Blackburn. S. I. 1999. The fatty acid and sterol composition of five marine dinoflagellates. J. Phycol. 35:710-720. 

  34. Mishra, S. K., Suh, W. I., Farooq, W., Moon, M., Shrivastav, A., Park, M. S. & Yang, J. W. 2014. Rapid quantification of microalgal lipids in aqueous medium by a simple colorimetric method. Bioresour. Technol. 155:330-333. 

  35. Muscatine, L. 1990. The role of symbiotic algae in carbon and energy flux in reef corals. In Dubinski, Z. (Ed.) Coral reefs: ecosystems of the world. Elsevier, NY, p. 75-87. 

  36. Park, J., Jeong, H. J., Yoo, Y. D. & Yoon, E. Y. 2013. Mixotrophic dinoflagellate red tides in Korean waters: distribution and ecophysiology. Harmful Algae 30(Suppl. 1):S28-S40. 

  37. Piretti, M. V., Pagliuca, G., Boni, L., Pistocchi, R., Diamante, M. & Gazzotti, T. 1997. Investigation of 4-methyl sterols from cultured dinoflagellate algal strains. J. Phycol. 33:61-67. 

  38. Smayda, T. J. 1997. Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol. Oceanogr. 42:1137-1153. 

  39. Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401. 

  40. Vatassery, G. T., Sheridan, M. A., Krezowski, A. M., Divine, A. S. & Bach, H. L. 1981. Use of the sulpho-phospo-vanillin reaction in a routine method for determining total lipids in human cerebrospinal fluid. Clin. Biochem. 14:21-24. 

LOADING...
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로