$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

한강수계 비점오염원 저감시설의 생애주기비용 평가
Lifecycle cost assessment of best management practices for diffuse pollution control in Han River Basin 원문보기

한국습지학회지 = Journal of wetlands research, v.18 no.4, 2016년, pp.448 - 455  

이소영 (국립환경과학원 물환경연구부 물환경평가연구과) ,  (공주대학교 건설환경공학부) ,  이정용 (씨에스이 E&C. Co. Ltd.) ,  문현생 (국립환경과학원 물환경연구부 물환경평가연구과) ,  김이형 (공주대학교 건설환경공학부)

초록
AI-Helper 아이콘AI-Helper

환경부는 비점오염원 관리를 위해 시범사업으로 12개의 비점오염 저감시설을 경안천 유역에 설치하였으며, 2006년부터 모니터링이 시작되었다. 본 연구는 비점오염 저감시설의 오염부하량, 저감효율, 유지관리 활동 등의 장기간 수행된 모니터링 결과를 바탕으로 각 시설의 경제성을 평가하기 위해 수행되었으며, 생애주기비용(Lifecycle cost, LCC)을 분석하였다. 비점오염 저감시설의 유지관리는 시설경관을 향상시키기 위한 심미적 관리가 중점적으로 수행된 것으로 나타났으며, 저류형 시설(Retention Pond, RP)이 년간 8,483$, 침투형 시설(Infiltration System, IS)이 8,888$로 대부분 비슷한 비용이 발생한 것으로 분석되었다. LCC는 인공습지(Constructed Wetland, CW)가 가장 높은 것($418,324)으로 나타났으며, 반면에 식생형 시설(Vegetated System, VS)이 가장 낮은 것($210,418)으로 분석되었다. 본 연구에서 조사된 비점오염 저감시설의 LCC와 하수처리장 등 수질처리시설의 LCC를 비교한 결과 비점오염 저감시설이 낮은 것으로 나타났다. 한편, 처리용량 대비 생애주기비용이 높아질수록 TSS와 TN의 저감효율은 높아지는 것으로 나타났다. 이러한 연구결과는 비용효율적인 비점오염 저감시설을 설계하는데 유용하게 활용될 것으로 기대되며, 향후 LCC 모델의 기초자료에도 활용될 수 있을 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

Diffuse pollution management in Korea initiated by the Ministry of Environment (MOE) resulted to the construction of pilot facilities termed Best Management Practices (BMPs). Twelve BMPs installed for the diffuse pollution management in the Kyung-An Stream were monitored since 2006. Data on the mass...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In addition, pH, electrical conductivity and turbidity were analyzed. Analyses were conducted in accordance with standard methods for the examination of water and wastewater. Meteorological data for study site were collected from Korea Meteorological Administration.
  • Aesthetic maintenance is important primarily for public acceptance of BMPs such as ponds, while functional maintenance is important for performance and safety reasons. In this study, most of the maintenance activities were focused in the aesthetic maintenance such as cleaning and removal of debris, litters and accumulated solid in the inflow channel and cover with a frequency of 20 times/year. The rearrangement of the soil at the retention zone and the cleaning of the sedimentation zone and surroundings have contributed to the improvement of pollutant removal efficiency of the system.
  • Real costs were used for LCC analysis in this study, and the base year was set at 2005. The financial data such as actual construction, design and maintenance cost were also collected to evaluate the LCC of BMPs.
  • , 2010). The first six samples were collected during the first hour at zero minute (initial sampling time) and after 5, 10, 15, 30, and 60 minutes followed by another six samples collected at an hourly interval. Short time of intervals were selected at the beginning if the runoff to determine the existence of a first flush.
  • BMP operation and maintenance were primarily based on BMP Design Management Manual (MOE, 2008) prepared by the MOE in Korea. The manual includes design, construction, operation, maintenance, management inspection checklists, and monitoring method for several BMPs. The recent maintenance activities conducted in BMPs are shown in Table 2.
  • , 2007). The purpose of an LCC analysis is to estimate the overall costs of project alternative and to select the design that ensures the facility will provide the lowest overall cost of ownership consistent with its quality and function. The LCC analysis should be performed early in the design process while there is still a chance to refine the design to ensure a reduction in LCC.
  • Therefore, this study was performed to evaluate the LCC of BMPs over a 30-year time frame based on actual construction, design and maintenance cost. The specific purpose was to provide a reference on the methods and parameters for cost analysis of BMPs. The final results of this study could serve as models for LCC analysis and cost control of BMPs for diffuse pollution management.
  • The actual costs vary greatly based on the character of the individual site and the creativity of the designer. Therefore, this study was performed to evaluate the LCC of BMPs over a 30-year time frame based on actual construction, design and maintenance cost. The specific purpose was to provide a reference on the methods and parameters for cost analysis of BMPs.

대상 데이터

  • Analyses were conducted in accordance with standard methods for the examination of water and wastewater. Meteorological data for study site were collected from Korea Meteorological Administration. The pollutant removal efficiency was calculated as the percent removal R for each parameter, which was calculated by R = (1 – Ce)/Ci × 100, where Ci and Ce are the influent and effluent concentration in mg/L.

이론/모형

  • BMP operation and maintenance were primarily based on BMP Design Management Manual (MOE, 2008) prepared by the MOE in Korea. The manual includes design, construction, operation, maintenance, management inspection checklists, and monitoring method for several BMPs.
본문요약 정보가 도움이 되었나요?

참고문헌 (22)

  1. Ehlen, MA, Marshall, HE (1996). The economics of new-technology materials: a case study of FRP birdge decking. NISTIT 5864, National Institute of Standards and Technology, Gaithersburg, Md. Guidelines and discount rates for benefit-cost analysis of federal programs, 

  2. Appendix C. (1992) OMB Circular No. A-94, Office of Management and Budget, Washington, D.C. 

  3. Gersberg, RM, Elkins, BV, Goldman, CR (1983). Nitrogen removal in artificial wetlands, Water Res., 17, pp. 1009-1014. 

  4. Hill, DT, Payton, JD (2000). Effect of plant fill ratio in water temperature in constructed wetlands, Biore. Technol., 71, pp. 283-289. 

  5. Houle, J, Roseen, R, Ballestero, T, Puls, T, Sherrard, J (2013). Comparison of maintenance cost, labor demands, and system performance for LID and conventional stormwater management, J. Environ. Eng., 139(7), pp. 932-938. 

  6. Huber, WC, Strecker, EW, Heaney, JP, Weinstein, N (2006). Evaluation of best management practices and low impact development for highway runoff control user's guide for BMP/LID selection guideline manual, National Cooperative Research Program. 

  7. Joksimovic, D, Alam, Z (2014). Cost efficiency of low impact development stormwater management practices, Procedia Engineering, 89, pp. 734-741. 

  8. Jung, YJ, Stenstrom, MK, Jung, DI, Kim, LH, Min, KS (2008). National pilot projects for management of diffuse pollution in Korea, Desalination, 226, pp. 97-105. [Korean Literature] 

  9. Kloss, C, Crystal, C (2006). Rooftops to Rivers - Green strategies for controlling stormwater and combined sewer overflows, Natural Resource Defense Council, June 2006. 

  10. Korean Ministry of Environment (MOE) (2008). BMP Design and Management Manual. 

  11. Lee, K, Kim, H, Pak, G, Jang, S, Kim, L, Yoo, C, Yun, Z, Yoon, J (2010). Cost-effectiveness analysis of stormwater best management practices (BMPs) in urban watersheds, Desalination and Water Treatment, 19, pp. 92-96. [Korean Literature] 

  12. Liao, Z, Chen, H, Huang, F, Li, H (2014). Cost-effectiveness analysis on LID measures of a highly urbanized area, Desalination and Water Treatment in Press. 

  13. Lim, YK, Jung, JC, Shin, HS, Ha, GJ (2014). Analyzing the efficiency of LID technique for urban non-point source management, J. Korean Env. Res. Tech., 17(2), pp. 1-14. [Korean Literature] 

  14. Maniquiz, MC, Lee, SY, Kim, LY (2010). Long-Term Monitoring of Infiltration Trench for Nonpoint Source Pollution Control, Water, Air and Soil Pollution, 212(1-4), pp. 13-26. 

  15. Montalto, F, Behr, C, Alfredo, K, Wolf, M, Arye, M, Walsh, M (2007). Rapid assessment of the cost-effectiveness of low impact development for CSO control, Landscape and Urban Planning, 82, pp. 117-131. 

  16. Panagopoulos, Y, Makropoulos, C, Mimikou, M (2011). Reducing surface water pollution through the assessment of the cost-effectiveness of BMPs at different spatial scales, J. of Environmental Management, 92, pp. 2823-2835. 

  17. Racoviceanu, AI, Karney, BW, Kennedy, CA (2007). Life-cycle energy use and greenhouse gas emissions inventory for water treatment system, J. Infrastruct. Syst., 13, pp. 261-270. 

  18. Santos, J, Ferreira, A (2013). Life-cycle cost analysis system for pavement management at project level, Int. J. Pavement Eng., 14, pp. 71-84. 

  19. Stokes, JR, Horvath, A (2009). Energy and air emission effects of water supply, Environ. Sci. Technol., 43, pp. 2680-2687. 

  20. United States Environmental Protection Agency (USEPA) (1999). Free water surface wetlands for wastewater treatment, United States Environmental Protection Agency, Washington, DC, June 1999, EPA 832-S-99-002. 

  21. United States Environmental Protection Agency (USEPA) (2005). Nonpoint Source News - Notes # 75, May 2005. 

  22. United States Environmental Protection Agency (USEPA) (2007). Reducing stormwater costs through low impact development (LID) strategies and practices, EPA publication number 841-F-07-006, December 2007. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로