$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

메탄올 생산용 고활성 Cu/ZnO 촉매 합성방법
Preparation of Active Cu/ZnO-based Catalysts for Methanol Synthesis 원문보기

공업화학 = Applied chemistry for engineering, v.27 no.6, 2016년, pp.555 - 564  

정천우 (한양대학교 화학공학과) ,  서영웅 (한양대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

대기 중 이산화탄소의 재활용 기술과 재생에너지에 의한 물 분해 기술의 접목이 최근 가능해지면서 메탄올은 많은 관심을 받고 있다. 경제성이 유리하도록 메탄올 경제를 실현하기 위해서는 고활성 메탄올 합성 촉매를 제조하여야 하며, 이를 위해서는 논리적인 접근법이 필요하다. 공침법을 통해 제조하는 Cu/ZnO 기반의 촉매는 침전, 숙성, 여과, 세척, 건조, 소성, 환원 등의 복잡한 단계로 제조되며, 100년의 역사를 가지고 있음에도 불구하고 최근에야 침전 화학과 촉매 나노구조에 대한 기초적인 이해가 이루어지고 있다. 이에 본 고에서는 단계별로 합성 변수가 침전, 소성, 환원상태 물질의 물성에 미치는 영향에 대한 최근 결과들을 리뷰하고, 화학적 기억 효과라고 부르는 이들 물성들과 최종 촉매의 활성 사이의 관련성을 논의하였다. 제조 변수별 설명은 메탄올 합성을 위한 Cu/ZnO 기반 고활성 촉매를 제조하는 방법에 초점이 맞추어져 있다. 논의된 합성 전략은 공침법을 기반으로 하는 타 금속 또는 금속 산화물 담지 촉매의 제조에 활용 가능할 것으로 판단된다.

Abstract AI-Helper 아이콘AI-Helper

In recent years, methanol has attracted much attention since it can be cleanly manufactured by the combined use of atmospheric $CO_2$ recycling and water splitting via renewable energy. For the concept of "methanol economy", an active methanol synthesis catalyst should be prepared in a so...

주제어

참고문헌 (61)

  1. G. A. Olah, A. Goeppert, and G. K. S. Prakash, Beyond Oil and Gas: The Methanol Economy, 2nd ed., 1-10, Wiley-VCH, Weinheim, Germany (2009). 

  2. G. A. Olah, Beyond oil and gas: The methanol economy, Angew. Chem. Int. Ed., 44, 2636-2639 (2005). 

  3. G. A. Olah, A. Goeppert, and G. K. S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem., 74, 487-498 (2009). 

  4. Methanol economy, https://en.wikipedia.org/wiki/Methanol_economy, 14th November 2016. 

  5. J. Ott, V. Gronemann, F. Pontzen, E. Fiedler, G. Grossmann, D. B. Kersebohm, G. Weiss, and C. Witte, Ullmann's Encyclopedia of Industrial Chemistry, Methanol, 1-27, Wiley-VCH, Weinheim, Germany (2012). 

  6. R. Schlogl, The revolution continues: Energiewende 2.0, Angew. Chem. Int. Ed., 54, 4436-4439 (2015). 

  7. X.-M. Liu, G. Q. Lu, Z.-F. Yan, and J. Beltramini, Recent advances in catalysts for methanol synthesis via hydrogenation of CO and $CO_2$ , Ind. Eng. Chem. Res., 42, 6518-6530 (2003). 

  8. J.-P. Lange, Methanol synthesis: a short review of technology improvements, Catal. Today, 64, 3-8 (2001). 

  9. S. G. Jadhav, P. D. Vaidya, B. M. Bhanage, and J. B. Joshi, Catalytic carbon dioxide hydrogenation to methanol: A review of recent studies, Chem. Eng. Res. Des., 92, 2557-2567 (2014). 

  10. W. Wang, S. Wang, X. Ma, and J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chem. Soc. Rev., 40, 3703-3727 (2011). 

  11. E. E. Barton, D. M. Rampulla, and A. B. Bocarsly, Selective solar- driven reduction of $CO_2$ to methanol using a catalyzed p-GaP based photoelectrochemical Cell, J. Am. Chem. Soc., 130, 6342-6344 (2008). 

  12. W.-H. Wang, Y. Himeda, J. T. Muckerman, G. F. Manbeck, and E. Fujita, $CO_2$ hydrogenation to formate and methanol as an alternative to photo- and electrochemical $CO_2$ reduction, Chem. Rev., 115, 12936-12973 (2015). 

  13. J. Zhang, Electrochemical Reduction of Carbon Dioxide: Fundamentals and Technologies, 1-45, CRC Press, USA (2016). 

  14. D. Nazimek and B. Czech, Artificial photosynthesis- $CO_2$ towards methanol, IOP Conf. Ser.: Mater. Sci. Eng., 19, 012010 (2010). 

  15. M. Watanabe, Photosynthesis of methanol and methane from $CO_2$ and $H_2O$ molecules on a ZnO surface, Surf. Sci. Lett., 279, L236-L242 (1992). 

  16. K. P. de Jong, Synthesis of Solid Catalysts, 329-351, Wiley-VCH, Weinheim (2009). 

  17. G. Lormand, Industrial production of synthetic methanol, Ind. Eng. Chem., 17, 430-432 (1925). 

  18. Per K. Frolich, M. R. Fenske, and D. Quiggle, Catalysts for the formation of alcohols from carbon monoxide and hydrogen, Ind. Eng. Chem., 20, 694-698 (1928). 

  19. M. R. Fenske and Per K. Frolich, Catalysts for the formation of alcohols from carbon monoxide and hydrogen, Ind. Eng. Chem., 21, 1052-1055 (1929). 

  20. D. Cornthwaite, Methanol synthesis catalyst, US Patent 3,923,694 (1975). 

  21. B. Bems, M. Schur, A. Dassenoy, H. Junkes, D. Herein, and R. Schlogl, Relations between synthesis and microstructural properties of copper/zinc hydroxycarbonates, Chem. Eur. J., 9, 2039-2052 (2003). 

  22. M. Behrens, Meso- and nano-structuring of industrial Cu/ZnO/( $Al_2O_3$ ) catalysts, J. Catal., 267, 24-29 (2009). 

  23. G. J. Millar, I. H. Holm, P. J. R. Uwins, and J. Drennan, Characterization of precursors to methanol synthesis catalysts Cu/ZnO system, J. Chem. Soc., Faraday Trans., 94, 593-600 (1998). 

  24. G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp, Handbook of Heterogeneous Catalysis, 100-119, Wiley-VCH, Weinheim, Germany (2008). 

  25. J.-L. Li and T. Inui, Characterization of precursors of methanol synthesis catalysts, copper/zinc/aluminum oxides, precipitated at different pHs and temperatures, Appl. Catal. A, 137, 105-117 (1996). 

  26. C. Baltes, S. Vukojevic, and F. Schuth, Correlations between synthesis, precursor, and catalyst structure and activity of a large set of CuO/ZnO/ $Al_2O_3$ catalysts for methanol synthesis, J. Catal., 258, 334-344 (2008). 

  27. E. Frei, A. Schaadt, T. Ludwig, H. Hillebrecht, and I. Krossing, The influence of the precipitation/ageing temperature on a Cu/ZnO/ $ZrO_2$ catalyst for methanol synthesis from $H_2$ and $CO_2$ , ChemCatChem, 6, 1721-1730 (2014). 

  28. M. Behrens, D. Brennecke, F. Girgsdies, S. Kissner, A. Trunschke, N. Nasrudin, S. Zakaria, N. F. Idris, S. B. A. Hamid, B. Kniep, R. Fischer, W. Busser, M. Muhler, and R. Schlogl, Understanding the complexity of a catalyst synthesis: Co-precipitation of mixed Cu,Zn,Al hydroxycarbonate precursors for Cu/ZnO/ $Al_2O_3$ catalysts investigated by titration experiments, Appl. Catal. A, 392, 93-102 (2011). 

  29. C. C. Perry and K. L. Shafran, The systematic study of aluminium speciation in medium concentrated aqueous solutions, J. Inorg. Biochem., 87, 115-124 (2001). 

  30. A. C. Vermeulen, J. W. Geus, R. J. Stol, and P. L. de Bruyn, Hydrolysis-precipitation studies of aluminum (III) solutions. 1. Titration of acidified aluminum nitrate solutions, J. Colloid Interface Sci., 51, 449-458 (1975). 

  31. B. C. Faust, W. B. Labiosa, K. H. Dai, J. S. MacFall, B. A. Browne, A. A. Ribeiro, and D. D. Richter, Speciation of aqueous mononuclear Al(III)-hydroxo and other Al(III) complexes at concentrations of geochemical relevance by aluminum-27 nuclear magnetic resonance spectroscopy, Geochim. Cosmochim. Acta, 59, 2651-2661 (1995). 

  32. S. L. Wang, M. K. Wang, and Y. M. Tzou, Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions, Colloids Surf. A, 231, 143-157 (2003). 

  33. M. Behrens, I. Kasatkin, S. Kuhl, and G. Weinberg, Phase-pure Cu,Zn,Al hydrotalcite-like materials as precursors for copper rich Cu/ZnO/ $Al_2O_3$ catalysts, Chem. Mater., 22, 386-397 (2010). 

  34. C. Jeong, J. Park, J. W. Bae, and Y.-W. Suh, Comparison of normal and reverse precipitation methods in the preparation of Cu/ZnO/ $Al_2O_3$ catalysts for hydrogenolysis of butyl butyrate, Catal. Commun., 54, 1-5 (2014). 

  35. C. Busetto, G. Del Piero, and G. Manara, Catalysts for low-temperature methanol synthesis: Preparation of Cu-Zn-Al mixed oxides via hydrotalcite-like precursors, Chem. Mater., 22, 386-397 (2010). 

  36. C. Jeong, M. J. Hyun, and Y.-W. Suh, Activity of coprecipitated CuO/ZnO catalysts in the decomposition of dimethylhexane-1,6-dicarbamate, Catal. Commun., 70, 34-39 (2015). 

  37. M. Behrens, F. Girgsdies, A. Trunschke, and R. Schlogl, Minerals as model compounds for Cu/ZnO catalyst precursors: Structural and thermal properties and IR spectra of mineral and synthetic (zincian) malachite, rosasite and aurichalcite and a catalyst precursor mixture, Eur. J. Inorg. Chem., 2009, 1347-1357 (2009). 

  38. M. J. Hyun, M. Shin, Y. J. Kim, and Y.-W. Suh, Phosgene-free decomposition of dimethylhexane-1,6-dicarbamate over Zn.O, Res. Chem. Intermed., 42, 57-70 (2016). 

  39. K. F. Ortega, A. Huttner, J. Heese, and M. Berhens, Effect of Ni incorporation into malachite precursors on the catalytic properties of the resulting nanostructured CuO/NiO catalysts, Eur. J. Inorg. Chem., 2016, 2063-2071 (2016). 

  40. D. M. Whittle, A. A. Mirzaei, J. S. J. Hargreaves, R. W. Joyner, C. J. Kiely, S. H. Taylor, and G. J. Hutchings, Co-precipitated copper zinc oxide catalysts for ambient temperature carbon monoxide oxidation: effect of precipitate ageing on catalyst activity, Phys. Chem. Chem. Phys., 4, 5915-5920 (2002). 

  41. S. Zander, B. Seidlhofer, and M. Behrens, In situ EDXRD study of the chemistry of aging of co-precipitated mixed Cu,Zn hydroxycarbonates - consequences for the preparation of Cu/ZnO catalysts, Dalton Trans., 41, 13413-13422 (2012). 

  42. T. E. Gier, X. Bu, S.-L. Wang, and G. D. Stucky, $Na_2Zn_3(CO_3)_4{\cdot}3H_2O$ , a microporous sodium zincocarbonate with a diamond-type tetrahedral-triangular topology, J. Am. Chem. Soc., 118, 3039-3040 (1996). 

  43. C. Jeong and Y.-W. Suh, Role of $ZrO_2$ in Cu/ZnO/ $ZrO_2$ catalysts prepared from the precipitated Cu/Zn/Zr precursors, Catal. Today, 265, 254-263 (2016). 

  44. M. Behrens, S. Zander, P. Kurr, N. Jacobsen, J. Senker, G. Koch, T. Ressler, R. W. Fischer, and R. Schlogl, Performance improvement of nanocatalysts by promoter-induced defects in the support material: Methanol synthesis over Cu/ZnO:Al, J. Am. Chem. Soc., 135, 6061-6068 (2013). 

  45. J. Schumann, T. Lunkenbein, A. Tarasov, N. Thomas, R. Schlogl, and M. Behrens, Synthesis and Characterisation of a Highly Active Cu/ZnO:Al Catalyst, ChemCatChem, 6, 2889-2897 (2014). 

  46. J. Schumann, M. Eichelbaum, T. Lunkenbein, N. Thomas, M. Consuelo, A. Galvan, R. Schlogl, and M. Behrens, Promoting strong metal support interaction: Doping ZnO for enhanced activity of Cu/ZnO:M (M Al, Ga, Mg) catalysts, ACS Catal., 5, 3260-3270 (2015). 

  47. Y.-W. Suh and H.-K. Rhee, Optimum washing conditions for the preparation of Cu/ZnO/ $ZrO_2$ for methanol synthesis from CO hydrogenation:Effects of residual sodium, Korean J. Chem. Eng., 19, 17-19 (2002). 

  48. S. Kuhl, A. Tarasov, S. Zander, I. Kasatkin, and M. Behrens, Cu-Based catalyst resulting from a Cu,Zn,Al hydrotalcite-like compound: A microstructural, thermoanalytical, and in situ XAS study, Chem. Eur. J., 20, 3782-3792 (2014). 

  49. J. Schumann, A. Tarasov, N. Thomas, R. Schlogl, and M. Behrens, Cu,Zn-based catalysts for methanol synthesis: On the effect of calcination conditions and the part of residual carbonates, Appl. Catal. A, 516, 117-126 (2016). 

  50. A. Tarasov, J. Schumann, F. Girgsdies, N. Thomas, and M. Behrens, Thermokinetic investigation of binary Cu/Zn hydroxycarbonates as precursors for Cu/ZnO catalysts, Thermochim. Acta, 591, 1-9 (2014). 

  51. G. Fierro, M. Lo Jacono, M. Inversi, P. Porta, F. Cioci, and R. Lavecchia, Study of the reducibility of copper in CuO-ZnO catalysts by temperature-programmed reduction, Appl. Catal. A, 137, 327-348 (1996). 

  52. M. M. Gunter, T. Ressler, R. E. Jentoft, and B. Bems, Redox behavior of copper oxide/zinc oxide catalysts in the steam reforming of methanol studied by in situ X-ray diffraction and absorption spectroscopy, J. Catal., 203, 133-149 (2001). 

  53. T. van Herwijnen and W. A. de Jong, Brass formation in a copper/zinc oxide CO shift catalyst, J. Catal., 34, 209-214 (1974). 

  54. M. S. Spencer, The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction, Top. Catal., 8, 259-266 (1999). 

  55. T. Kandemir, F. Girgsdies, T. C. Hansen, K.-D. Liss, I. Kasatkin, E. L. Kunkes, G. Wowsnick, N. Jacobsen, R. Schlogl, and M. Behrens, In situ study of catalytic processes: Neutron diffraction of a methanol synthesis catalyst at industrially relevant pressure, Angew. Chem. Int. Ed., 52, 5166-5170 (2013). 

  56. J.-D. Grunwaldt, A. M. Molenbroek, N.-Y. Topsoe, H. Topsoe, and B. S. Clausen, In situ investigations of structural changes in Cu/ZnO catalysts, J. Catal., 194, 452-460 (2000). 

  57. P. L. Hansen, J. B. Wagner, S. Helveg, J. R. Rostrup-Nielsen, B. S. Clausen, and H. Topsoe, Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals, Science, 295, 2053-2055 (2002). 

  58. P. C. K. Vesborg, I. Chorkendorff, I. Knudsen, O. Balmes, J. Nerlov, A. M. Molenbroek, B. S. Clausen, and S. Helveg, Transient behavior of Cu/ZnO-based methanol synthesis catalysts, J. Catal., 262, 65-72 (2009). 

  59. T. Lunkenbein, J. Schumann, M. Behrens, R. Schlogl, and M. G. Willinger, Formation of a ZnO overlayer in industrial Cu/ZnO/ $Al_2O_3$ catalysts induced by strong metal-support interactions, Angew. Chem. Int. Ed., 54, 4544-4548 (2015). 

  60. M. B. Fichtl, J. Schumann, I. Kasatkin, N. Jacobsen, M. Behrens, R. Schlogl, M. Muhler, and O. Hinrichsen, Counting of oxygen defects versus metal surface sites in methanol synthesis catalysts by different probe molecules, Angew. Chem. Int. Ed., 53, 7043-7047 (2014). 

  61. S. Kuld, C. Conradsen, P. G. Moses, I. Chorkendorff, and J. Sehested, Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst, Angew. Chem. Int. Ed., 53, 5941-5945 (2014). 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로