$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

사회연결망정보를 고려하는 SVD 기반 추천시스템
Recommender Systems using SVD with Social Network Information 원문보기

지능정보연구 = Journal of intelligence and information systems, v.22 no.4, 2016년, pp.1 - 18  

김민건 (유세스파트너스(주)) ,  김경재 (동국대학교, 서울 경영대학 경영정보학과)

초록
AI-Helper 아이콘AI-Helper

협업필터링은 사용자의 선호도 평가자료를 이용하여 특정 사용자의 특정 상품에 대한 선호도를 예측하고 이를 이용하여 유사한 사용자에게 상품을 추천한다. 협업필터링은 전자상거래에서의 정보 과잉현상을 줄여 주기에 가장 인기 있는 개인화 기법이다. 그러나 협업필터링은 희소성과 확장성 문제 등을 가지고 있다. 본 연구에서는 희소성과 확장성 문제와 같은 협업필터링의 주요 한계점을 보완하고 추천과정에 사용자의 정성적이고 감성적인 정보를 반영하도록 하기 위하여 사회연결망 정보와 협업필터링을 접목하는 방안을 이용한다. 본 논문에서는 특이값 분해에 내재적인 정보를 반영할 수 있도록 확장한 SVD++에 사회연결망 정보를 고려할 수 있도록 한 Social SVD++ 알고리듬을 협업필터링에 접목한 새로운 추천 알고리듬을 이용한다. 특히, 본 연구는 추천과정에 실제 사용자의 사회연결망 정보를 반영하여 모형의 성과를 평가할 것이다.

Abstract AI-Helper 아이콘AI-Helper

Collaborative Filtering (CF) predicts the focal user's preference for particular item based on user's preference rating data and recommends items for the similar users by using them. It is a popular technique for the personalization in e-commerce to reduce information overload. However, it has some ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • Experiments were carried out to predict the preference of the Social SVD++ CF and to confirm its usefulness. Experiment 1 sequentially conducted experiments for evaluating SVD, SVD++, and Social SVD++ prediction performance on the Research Data 1.
  • The second data is the data used in Kim and Ahn (2010), which is rating information related to movie preference and social network information between the users. In order to optimize and generalize the parameters of SVD, the research data were divided into two parts: training set and test set, and then SVD, SVD++, and Social SVD++ were sequentially applied to the test set.
  • In particular, this study will evaluate the performance of the model by reflecting the real-world user's social network information in the recommendation process.
  • In this paper, we use a method to integrate social network information into collaborative filtering in order to mitigate the sparsity and scalability problems which are major limitations of typical collaborative filtering and reflect the user's qualitative and emotional information in recommendation process.
  • In this study, we tried to confirm the usefulness Social SVD++ CF model, which considers social network information of real-world users as implicit data by integrating typical collaborative filtering and extended SVD++ model. Social SVD++ CF has the advantage of reflecting the user's qualitative and emotional information in the recommendation process because it can reflect the user's social network information in the recommendation process.
  • In this study, we try to verify the usefulness the model by using real-world users’ product rating and social network information.
  • The method used in this study reflects the social network information of the user which can be considered to contain the user's qualitative and emotional information among the implicit data that can be considered in SVD++.

대상 데이터

  • Experiment 1 sequentially conducted experiments for evaluating SVD, SVD++, and Social SVD++ prediction performance on the Research Data 1. Experiment 1 consisted of 482 training sets and 120 test sets with the ratio of 6: 4 data of 32 restaurants and cafes evaluated by 39 users in Research Data 1. Experiment 2 consisted of 2816 training sets and 1877 test sets with the ratio of 6: 4 data of 90 movies evaluated by 100 users in Research Data 2.
  • Experiment 1 consisted of 482 training sets and 120 test sets with the ratio of 6: 4 data of 32 restaurants and cafes evaluated by 39 users in Research Data 1. Experiment 2 consisted of 2816 training sets and 1877 test sets with the ratio of 6: 4 data of 90 movies evaluated by 100 users in Research Data 2.
  • 2, there are many kinds of data was collected such as frequent visiting days, frequent visiting time, visiting purpose, taste of goods, price, atmosphere, convenience, satisfaction for restaurants, cafes in the university or nearby. Finally, total of 288 survey items were collected by defining 32 items with 9 preference evaluations per each item. In this study, only the overall satisfaction score was utilized.
  • Meanwhile, research data 2 is data used by Kim and Ahn (2010), and includes ratings data and social network information of real-world users about movie preference. Research data 2 includes 100 movies rating data for 90 users and includes friendship data from social network services such as Twitter, Facebook, MySpace, Cyworld, and others. See Kim and Ahn (2010) for a detailed description of Research Data 2.
  • The research data used in this study were collected through mobile and internet online surveys by building a customer rating data system. As shown in Fig.
  • 3. This screen provides images of demographic characteristics, 32 restaurants and cafes. The users evaluate the point-of-interest using score from 0 to 7.

데이터처리

  • For this purpose, the MAE (Mean Absolute Error), which means the absolute value of the difference between the predicted value of the product and the actual value, is calculated for each model, and the results of the SVD based collaborative filtering, the SVD++ based collaborative filtering, and the social SVD++ based collaborative filtering are compared. And we check the generalizability of the differences among models using paired sample t-test.
  • In this study, to compare SVD, SVD++, and Social SVD++, the difference between the predicted preference score and actual preference score is evaluated as MAE (Mean Absolute Error), and the difference is statistically significant (Paired Sample T-Test) was performed. The MAE is a statistical measure for evaluating the prediction accuracy of the recommended performance by comparing the score predicted from the analysis with the score evaluated by the actual user.

이론/모형

  • In this paper, we use a method to integrate social network information into collaborative filtering in order to mitigate the sparsity and scalability problems which are major limitations of typical collaborative filtering and reflect the user's qualitative and emotional information in recommendation process. In this paper, we use a novel recommendation algorithm which is integrated with collaborative filtering by using Social SVD++ algorithm which considers social network information in SVD++, an extension algorithm that can reflect implicit information in singular value decomposition (SVD). In particular, this study will evaluate the performance of the model by reflecting the real-world user's social network information in the recommendation process.
  • Since the yj in equation (3) are controlled close to zero, their sum is normalized by # to stabilize the deviation over the range of the observed values of |R(u)|. The coefficients of the model are determined by minimizing the associated constraint squared error function through a stochastic gradient descent algorithm.
본문요약 정보가 도움이 되었나요?

참고문헌 (28)

  1. Adomavicius, G. and A. Tuzhilin, "Toward the next generation of recommender systems : A survey of the state-of-the-art and possible extensions," IEEE Transactions on Knowledge and Data Engineering, Vol.17, No.6(2005), 734-749. 

  2. Billsus, D. and M. J. Pazzani, "Learning Collaborative Information Filters," In Proceedings of Recommender Systems Workshop. Tech. Report WS-98-08, AAAI Press, 1998, 46-54, 

  3. Cho, Y. and J. Bang, "Social network analysis for new product recommendation," Journal of Intelligence and Information Systems, Vol.15, No.4(2009), 183-200. 

  4. Debnath, S., M. Granguly, and P. Mitra, "Feature weighting based recommendation system using social network analysis", Proceeding of WWW 2008, 2008, 1041-1042. 

  5. Deerwester, S., S. RT. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, "Indexing by Latent Semantic Analysis," Journal of the American Society for Information Science, Vol.41, 1990, 391-407. 

  6. Funakoshi, K. and T. Ohguri, "A Content-based collaborative recommender system with detailed use of evaluations," Proceedings of the 4th International conference on knowledge-based Intelligent Engineering systems and Allied Technologies, 2000, 253-256. 

  7. Funk, S., "Netflix Update: Try This At home," http://sifter.org/-simon/journal/20061211.html, 2006 

  8. Ghazanfar, M. A. and A. Pr"ugel-Bennett, "Leveraging Clustering Approaches to Solve the Gray-Sheep Users Problem in Recommender Systems," Expert Systems with Applications, Vol.41, No.7(2014), 3261-3275. 

  9. Golbeck, J. and J. Hendler, "Filmtrust: Movie recommendations using trust in web-based social networks," Proceedings of the IEEE Consumer Communications and Networking Conference, 2006, 282-286. 

  10. Gorrell, G. and S. Funk, "Generalized hebbian algorithm for incremental latent semantic analysis," Proceedings of Interspeech, 2006, 1325-1328. 

  11. Jyun-Cheng, W., and C. Chui-Chen, "Recommending trusted online auction sellers using social network analysis", Expert Systems with Applications, Vol. 34, 2008, 1666-1679. 

  12. Kang, B. -S., "A novel web recommendation method for new customers using structural holes in social networks," Journal of Industrial Economics and Business, Vol.23, No.5(2010), 2371-2385. 

  13. Kang, B. -S., "Structural hole of social network analysis for recommending new items," Journal of the Korean Data Analysis Society, Vol. 13, No. 3(B), 1365-1377. 

  14. Kim, K. and H. C. Ahn, "Hybrid recommender systems using cluster-indexing collaborative filtering and social network analysis", Proceedings of the 2010 Fall Conference of Korean Management Information Systems Society, 2010, 604-609. 

  15. Kim, M. G. and K. Kim, "Recommender systems using structural hole and collaborative filtering," Journal of Intelligence and Intelligent Systems, Vol.20, No.4(2014), 107-120. 

  16. Kim, Y. S., H. C. Lee, and H. J. Chun, "Development of hybrid recommender systems in e-commerce using SVD", Journal of Korea Society of Supply Chain Management, Vol.2, No.1(2002), 21-30. 

  17. Koren, Y., "Factorization meets the neighborhood: a multifaceted Collaborative filtering model," Proceedings of the 14th ACM SIGKDD international Conference on Knowledge Discovery and Data Mining, 2008, 426-434. 

  18. Koren, Y. and R. Bell, "Advances in collaborative filtering," Recommender Systems Handbook, Edited by Ricci, F., L. Rokach, B. Shapira, and P. B. Kantor, Springer US, 2011 145-186. 

  19. Kumar, R., B. K. Verma, and S. S. Rastogi, "Social popularity based SVD++ recommender system," International Journal of Computer Applications, Vol.87, No.14(2014), 33-37. 

  20. Lee, H. D. and H. J. Kim, "Improving Collaborative Filtering with Rating Prediction Based on Taste Space", Journal of KIISE: Database, Vol.34, No.5(2007), 389-395. 

  21. Liu, F. and H. J. Lee, "Use of social network information to enhance collaborative filtering performance," Expert Systems with Applications, Vol. 37, 2010 4772-4778. 

  22. Park, J. H., Y. H. Cho, and J. K. Kim, "Social network: a novel approach to new customer recommendations", Journal of Intelligence and Intelligent Systems, Vol.15, No.1(2009), 123-140. 

  23. Paterek, A., "Improving regularized singular value decomposition for collaborative Filtering," KDD-Cup and Workshop, ACM press, 2007, 39-42, 

  24. Ricci, F., L. Rokach, B. Shapira, and P.B. Kantor, "Recommender Systems Handbook", Springer, 2011 

  25. Sarwar, B., G. Karypis, J. Konstan, and J. Riedl, "Application of dimensionality reduction in recommender systems-a case study," In ACM WebKDD Workshop, 2000 

  26. Su, X. and T. M. Khoshgoftaar, "Collaborative Filtering for Multi-Class Data Using Bayesian Networks," International Journal on Artificial Intelligence Tools, Vol.17, No.1(2008), 71-85. 

  27. Wang, H. F. and C. T. Wu, "A Strategy-oriented Operation Module for Recommender Systems in E-commerce," Computers and Operations Research, Vol.39, No.10, 2012, 1837-1849. 

  28. Yang, W. and J. Dia, "Discovering cohesive subgroups from social networks for targeted advertising," Expert Systems with Applications, Vol. 34, 2008, 2029-2038. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로