$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

CZTS 박막 태양전지 최신 연구 동향 원문보기

태양광발전학회 = Bulletin of the Korea Photovoltaic Society, v.2 no.2, 2016년, pp.8 - 20  

조은애 (신소재공학부 전남대학교) ,  강명길 (신소재공학부 전남대학교) ,  홍창우 (신소재공학부 전남대학교) ,  장준성 (신소재공학부 전남대학교) ,  김인영 (전기전자컴퓨터공학부 광주과학기술원) ,  김진혁 (신소재공학부 전남대학교)

초록이 없습니다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • Su는 밴드갭을 조절하고 결정의 크기를 증가시켜 소자의 효율을 증가시키기 위하여 CZTS에 Zn와 Ag를 도핑한 연구 결과를 보고하였다.[26] CZTS에 Cd를 첨가한 일명 CZCTS는 sol-gel용액을 제작시에 Cd(CH3COO)2∙H2O의 형태로 첨가하였고 화학적 조성비는 Cu/(Zn+Cd+Sn) = 0.
  • 지금까지 CZTS 기반의 태양전지의 효율을 향상시기기 위하여 많은 물리적 화학적 기반의 증착방법들이 채용되어 왔으며, 많은 연구 성과들을 보고해 오고 있다. 본 글에서는 최근에 보고된 CZTS 태양전지의 합성 기술을 소개하고 CZTS 태양전지의 제조 기술과 개발현황에 대하여 논의하고자 한다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
CZTS란? CZTS는 Cu2(MII,MIV)(Sx,Se1-x)4(MII=Mn, Fe, Co, Ni, Zn, Cd, Hg; MIV = Si, Ge, Ga)의 형태로 구성된 칼코지나이드 기반의 화합물 반도체로서 직접 천이형 밴드갭 에너지를 가지고 있고 높은 광 흡수계수 (>104cm-1)및 태양전지에 적합한 밴드갭 에너지 범위 (1-1.5eV)를 가지고 있다.
다결정 기반의 CdTe, Cu(In,Ga)(S,Se)2(CIGS)를 기반으로 하는 박막형 태양전지가 각광받는 이유는? 최근,환경적인 문제들이 대두되면서 신재생 에너지에 대한 관심이 증대하고 있다. 그 중 다결정 기반의 CdTe, Cu(In,Ga)(S,Se)2(CIGS)를 기반으로 하는 박막형 태양전지는 우수한 광학적 특성과 광 에너지 변환 효율로 인하여 각광받고 있으며 그 연구는 산업화 단계에 접어들어 있다. 특히, CdTe와 CIGS 박막형 태양전지는 연구실 단위에서 각각 22.
CdTe와 CIGS 박막형 태양전지의 단점은? 6 %(ZSW, 독일)의 변환 효율을 달성하였고, 모듈의 경우 의 변환 효율을 보이는 태양전지를 생산하고 있다.[1] 그러나 Cd의 독성과 함께 In과 Ga의 희소성으로 인해 미래의 상업화를 위한 태양전지의 구성 물질로서는 한계가 있다는 단점을 가지고 있다. 이러한 단점을 해결하기 위하여 친환경적인 범용 원소를 채용하여 광 흡수층을 합성하고 박막형 태양전지를 제조하는 연구가 활발히 진행 되어 오고 있다.
질의응답 정보가 도움이 되었나요?

참고문헌 (39)

  1. P. Jackson, R. Wuerz, D. Hariskos, E. Lotter, W. Witte and M. Powalla, "Effects of heavy alkali elements in $Cu(In,Ga)Se_2$ solar cells with efficiencies upto 22.6%," physica status solidi (RRL) - Rapid Research Letters, vol. 10, no. 8, pp. 583-586, 2016. 

  2. D. B. Mitzi, O. Gunawan, T. K. Todorov, K. Wang and S. Guha, "The path towards a highperformance solution- processed kesterite solar cell," Solar Energy Materials and Solar Cells, vol. 95, no. 6, pp. 1421-1436, 2011. 

  3. S. Chen, A. Walsh, X.-G. Gong and S.-H. Wei, "Classification of Lattice Defects in the Kesterite $Cu_2ZnSnS_4$ and $Cu_2ZnSnSe_4$ Earth- Abundant Solar Cell Absorbers," Advanced Materials, vol. 25, no. 11, pp. 1522-1539, 2013. 

  4. S. Botti, D. Kammerlander and M. A. L. Marques, "Band structures of $Cu_2ZnSnS_4$ and $Cu_2ZnSnSe_4$ from many-body methods," Applied Physics Letters, vol. 98, no. 24, pp. 241915, 2011. 

  5. S. Chen, X. G. Gong, A. Walsh and S.-H. Wei, "Crystal and electronic band structure of $Cu_2ZnSnX_4$ (XS and Se) photovoltaic absorbers: First-principles insights," Applied Physics Letters, vol. 94, no. 4, pp. 041903, 2009. 

  6. H. Wang, "Progress in Thin Film Solar Cells Based on $Cu_2ZnSnS_4$ ," International Journal of Photoenergy, vol. 2011, pp. 10, 2011. 

  7. D. A. R. Barkhouse, O. Gunawan, T. Gokmen, T. K. Todorov and D. B. Mitzi, "Device characteristics of a 10.1% hydrazine-processed $Cu_2ZnSn(Se,S)_4$ solar cell," Progress in Photovoltaics: Research and Applications, vol. 20, no. 1, pp. 6-11, 2012. 

  8. W. Wang, M. T. Winkler, O. Gunawan, T. Gokmen, T. K. Todorov, Y. Zhu and D. B. Mitzi, "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Advanced Energy Materials, vol. 4, no. 7, pp. n/a-n/a, 2014. 

  9. J. Kim, H. Hiroi, T. K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y. S. Lee, W. Wang, H. Sugimoto and D. B. Mitzi, "High Efficiency $Cu_2ZnSn(S,Se)_4$ Solar Cells by Applying a Double $In_2S_3/CdS$ Emitter," Advanced Materials, vol. 26, no. 44, pp. 7427-7431, 2014. 

  10. K.-J. Yang, D.-H. Son, S.-J. Sung, J.-H. Sim, Y.-I. Kim, S.-N. Park, D.-H. Jeon, J. Kim, D.-K. Hwang, C.-W. Jeon, D. Nam, H. Cheong, J.-K. Kang and D.-H. Kim, "A band-gap-graded CZTSSe solar cell with 12.3% efficiency," Journal of Materials Chemistry A, vol. 4, no. 26, pp. 10151-10158, 2016. 

  11. S. W. Seo, J.-O. Jeon, J. W. Seo, Y. Y. Yu, J.-h. Jeong, D.-K. Lee, H. Kim, M. J. Ko, H. J. Son, H. W. Jang and J. Y. Kim, "Compositional and Interfacial Modification of $Cu_2ZnSn(S,Se)_4$ Thin- Film Solar Cells Prepared by Electro chemical Deposition," ChemSusChem, vol. 9, no. 5, pp. 439-444, 2016. 

  12. Y. S. Lee, T. Gershon, O. Gunawan, T. K. Todorov, T. Gokmen, Y. Virgus and S. Guha, " $Cu_2ZnSnSe_4$ Thin-Film Solar Cells by Thermal Co-evaporation with 11.6% Efficiency and Improved Minority Carrier Diffusion Length," Advanced Energy Materials, vol. 5, no. 7, pp. 1401372, 2015. 

  13. S. Oueslati, G. Brammertz, M. BuffiBre, H. ElAnzeery, O. Touayar, C. KBble, J. Bekaert, M. Meuris and J. Poortmans, "Physical and electrical characterization of high-performance $Cu_2ZnSnSe_4$ based thin film solar cells," Thin Solid Films, vol. 582, pp. 224-228, 2015. 

  14. D. Hironiwa, J. Chantana, N. Sakai, T. Kato, H. Sugimoto and T. Minemoto, "Application of multi-buffer layer of (Zn,Mg)O/CdS in $Cu_2ZnSn(Se,S)_4$ solar cells," Current Applied Physics, vol. 15, no. 3, pp. 383-388, 2015. 

  15. S. Giraldo, T. Thersleff, G. Larramona, M. Neuschitzer, P. Pistor, K. Leifer, A. P rez-Rodr guez, C. Moisan, G. Dennler and E. Saucedo, " $Cu_2ZnSnSe_4$ solar cells with 10.6% efficiency through innovative absorber engineering with Ge superficial nanolayer," Progress in Photovoltaics: Research and Applications, vol. 24, no. 10, pp. 1359-1367, 2016. 

  16. J. Li, H. Wang, L. Wu, C. Chen, Z. Zhou, F. Liu, Y. Sun, J. Han and Y. Zhang, "Growth of $Cu_2ZnSnSe_4$ Film under Controllable Se Vapor Composition and Impact of Low Cu Content on Solar Cell Efficiency," ACS Applied Materials & Interfaces, vol. 8, no. 16, pp. 10283-10292, 2016. 

  17. K. Sun, C. Yan, F. Liu, J. Huang, F. Zhou, J. A. Stride, M. Green and X. Hao, "Over 9% Efficient Kesterite $Cu_2ZnSnS_4$ Solar Cell Fabricated by Using $Zn_{1-x}Cd_xS$ Buffer Layer," Advanced Energy Materials, vol. 6, no. 12, pp.1600046, 2016. 

  18. S. A. Vanalakar, S. W. Shin, G. L. Agawane, M. P. Suryawanshi, K. V. Gurav, P. S. Patil and J. H. Kim, "Effect of post-annealing atmosphere on the grain-size and surface morphological properties of pulsed laser deposited CZTS thin films," Ceramics International, vol. 40, no. 9, Part B, pp. 15097-15103, 2014. 

  19. X. Jin, C. Yuan, L. Zhang, G. Jiang, W. Liu and C. Zhu, "Pulsed laser deposition of $Cu_2ZnSn(S_xSe_{1?x})_4$ thin film solar cells using quaternary oxide target prepared by combustion method," Solar Energy Materials and Solar Cells, vol. 155, pp. 216-225, 2016. 

  20. W.-C. Hsu, I. Repins, C. Beall, C. DeHart, G. Teeter, B. To, Y. Yang and R. Noufi, "The effect of Zn excess on kesterite solar cells," Solar Energy Materials and Solar Cells, vol. 113, pp. 160-164, 2013. 

  21. A. Redinger, J. Sendler, R. Djemour, T. P. Weiss, G. Rey, P. J. Dale and S. Siebentritt, "Different Bandgaps in $Cu_2ZnSnSe_4$ : A High Temperature Co evaporation Study," IEEE Journal of Photovoltaics, vol. 5, no. 2, pp. 641-648, 2015. 

  22. S. Kim, K. M. Kim, H. Tampo, H. Shibata, K. Matsubara and S. Niki, "Ge-incorporated $Cu_2ZnSnSe_4$ thin-film solar cells with efficiency greater than 10%," Solar Energy Materials and Solar Cells, vol. 144, pp. 488-492, 2016. 

  23. T. Aizawa, K. Tanaka, K. Tagami and H. Uchiki, "Investigation of ZnO:Al window layer of $Cu_2ZnSnS_4$ thin film solar cells prepared by non-vacuum processing,"physica status solidi (c), vol. 10, no. 7-8, pp. 1050-1054, 2013. 

  24. J. W. Cho, A. Ismail, S. J. Park, W. Kim, S. Yoon and B. K. Min, "Synthesis of $Cu_2ZnSnS_4$ Thin Films by a Precursor Solution Pastefor Thin Film Solar Cell Applications," ACS Applied Materials & Interfaces, vol. 5, no. 10, pp. 4162-4165, 2013. 

  25. W. Zhao, G. Wang, Q. Tian, Y. Yang, L. Huang and D. Pan, "Fabrication of $Cu_2ZnSn(S,Se)_4$ Solar Cells via an Ethanol-Based Sol-Gel Route Using $SnS_2$ as Sn Source," ACS Applied Materials & Interfaces, vol. 6, no. 15, pp. 12650-12655, 2014. 

  26. Z. Su, W. Li, G. Asim, T. Y. Fan and L. H. Wong, "Cation substitution of CZTS solar cell with 10% efficiency," in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Ed., pp. 0534-0538, 2016. 

  27. Y. Zhang, C. Liao, K. Zong, H. Wang, J. Liu, T. Jiang, J. Han, G. Liu, L. Cui, Q. Ye, H. Yan and W. Lau, " $Cu_2ZnSnSe_4$ thin film solar cells prepared by rapid thermal annealing of co-electroplated Cu-Zn-Snprecursors," Solar Energy, vol. 94, pp. 1-7, 2013. 

  28. J. Ge, J. Jiang, P. Yang, C. Peng, Z. Huang, S. Zuo, L. Yang and J. Chu, "A 5.5% efficient co-electrodeposited ZnO/CdS/ $Cu_2ZnSnS_4$ /Mo thin film solar cell," Solar Energy Materials and Solar Cells, vol. 125, pp. 20-26, 2014. 

  29. F. Jiang, S. Ikeda, Z. Tang, T. Minemoto, W. Septina, T. Harada and M. Matsumura, "Impact of alloying duration of an electrodeposited Cu/Sn/Zn metallic stack on properties of $Cu_2ZnSnS_4$ absorbers for thin-film solar cells," Progress in Photovoltaics: Research and Applications, vol. 23, no. 12, pp. 1884-1895, 2015. 

  30. W.-C. Hsu, H. Zhou, S. Luo, T.-B. Song, Y.-T. Hsieh, H.-S. Duan, S. Ye, W. Yang, C.-J. Hsu, C. Jiang, B. Bob and Y. Yang, "Spatial Element Distribution Control in a Fully Solution-Processed Nanocrystals-Based 8.6 % $Cu_2ZnSn(S,Se)_4$ Device," ACS Nano, vol. 8, no. 9, pp. 9164-9172, 2014. 

  31. C. K. Miskin, W.-C. Yang, C. J. Hages, N. J. Carter, C. S. Joglekar, E. A. Stach and R. Agrawal, "9.0% efficient $Cu_2ZnSn(S,Se)_4$ solar cells from selenized nanoparticle inks," Progress in Photovoltaics: Research and Applications, vol. 23, no. 5, pp. 654-659, 2015. 

  32. X. Jin, J. Li, G. Chen, C. Xue, W. Liu and C. Zhu, "Preparation of $Cu_2ZnSnS_4$ -based thin film solar cells by a combustion method," Solar Energy Materials and Solar Cells, vol. 146, pp. 16-24, 2016. 

  33. S.-Y. Wei, Y.-C. Liao, C.-H. Hsu, C.-H. Cai, W.-C. Huang, M.-C. Huang and C.-H. Lai, "Achieving high efficiency $Cu_2ZnSn(S,Se)_4$ solar cells by non-toxic aqueous ink: Defect analysis and electrical modeling," Nano Energy, vol. 26, pp. 74-82, 2016. 

  34. M. G. Gang, S. W. Shin, C. W. Hong, K. V. Gurav, J. Gwak, J. H. Yun, J. Y. Lee and J. H. Kim, "Sputtering processed highly efficient $Cu_2ZnSn(S,Se)_4$ solar cells by a low-cost, simple, environmentally friendly, and up-scalable strategy," Green Chemistry, vol. 18, no. 3, pp. 700-711, 2016. 

  35. A. V. Moholkar, S. S. Shinde, G. L. Agawane, S.H. Jo, K. Y. Rajpure, P. S. Patil, C. H. Bhosaleand J. H. Kim, "Studies of compositionaldependent CZTS thin film solar cells by pulsedlaser deposition technique: An attempt toimprove the efficiency," Journal of Alloys andCompounds, vol. 544, pp. 145-151, 2012. 

  36. G. Y. Kim, D.-H. Son, T. Thi Thu Nguyen, S.Yoon, M. Kwon, C.-W. Jeon, D.-H. Kim, J.-K.Kang and W. Jo, "Enhancement of photoconversionefficiency in $Cu_2ZnSn(S,Se)_4$ thin-filmsolar cells by control of ZnS precursor-layerthickness," Progress in Photovoltaics: Researchand Applications, vol. 24, no. 3, pp. 292-306,2016. 

  37. S. W. Shin, K. V. Gurav, C. W. Hong, J. Gwak, H.R. Choi, S. A. Vanalakar, J. H. Yun, J. Y. Lee, J.H. Moon and J. H. Kim, "Phase segregations andthickness of the $Mo(S,Se)_2$ layer in $Cu_2ZnSn(S,Se)_4$ solar cells at different sulfurizationtemperatures,"Solar Energy Materials and SolarCells, vol. 143, pp. 480-487, 2015. 

  38. D. B. Khadka, S. Kim and J. Kim, "A NonvacuumApproach for Fabrication of $Cu_2ZnSnSe_4/In_2S_3$ Thin Film Solar Cell and OptoelectronicCharacterization,"The Journal of Physical Chemistry C, vol. 119, no. 22, pp. 12226-12235, 2015. 

  39. Y. Hwang, B.-I. Park, B.-S. Lee, J. Y. Kim, J.-H.Jeong, H. Kim, M. J. Ko, B. Kim, H. J. Son, S. Y.Lee, J.-S. Lee, J.-K. Park, S.-H. Cho and D.-K.Lee, "Influences of Extended Selenization on $Cu_2ZnSnS_4$ Solar Cells Prepared from QuaternaryNanocrystalInk," The Journal of Physical Chemistry C, vol. 118, no. 48, pp. 27657-27663, 2014. 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로