$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Facile Synthesis of MoS2-C60 Nanocomposites and Their Application to Catalytic Reduction and Photocatalytic Degradation 원문보기

Elastomers and composites = 엘라스토머 및 콤포지트, v.51 no.4, 2016년, pp.286 - 300  

Li, Jiulong (Department of Convergence Science, Graduate School, Sahmyook University) ,  Ko, Weon Bae (Department of Convergence Science, Graduate School, Sahmyook University)

Abstract AI-Helper 아이콘AI-Helper

$MoS_2$ precursors were synthesized by reacting thioacetamide ($C_2H_5NS$) with sodium molybdate dihydrate ($Na_2MoO_4{\cdot}2H_2O$) in aqueous HCl solution. $MoS_2$ nanoparticles were prepared from dried $MoS_2$ precursors by calcination in an ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

제안 방법

  • In order to test the photocatalytic activities of the synthesized samples, solutions of organic dyes, BG, MB, MO, and RhB, were prepared and their degradation was performed using MoS2 nanoparticles and MoS2-C60 nanocomposites as photocatalysts under UV lamp irradiation at 254 nm. Before UV irradiation, the reactor was kept in a dark environment for 30 min to achieve an adsorption-desorption equilibrium for the organic dyes.
  • A UV lamp at 254 nm was used to provide UV light, with a distance of 1 cm between the lamp and reactor. The photocatalytic degradation of the organic dyes was analyzed by UV Vis spectrophotometry, monitoring every 10 min when using MoS2 nanoparticles as photocatalysts, and 5 min intervals when using MoS2-C60 nanocomposites as photocatalysts.

대상 데이터

  • 3-Nitrophenol was supplied by Tae Jin Chemical. BG and MO were purchased from Sigma-Aldrich (China). MB·3H2O, RhB, and tetrahydrofuran (THF) were obtained from Samchun Chemicals (Korea).
  • The catalytic reduction of nitrophenols was monitored every 20 min using a UV-Vis spectrophotometer. The catalysts were MoS2 nanoparticles and MoS2-C60 nanocomposites.
본문요약 정보가 도움이 되었나요?

참고문헌 (38)

  1. H. Liu, T. Lv, C. Zhu, X. Su, and Z. Zhu, "Efficient synthesis of $MoS_2$ nanoparticles modified $TiO_2$ nanobelts with enhanced visible-light-driven photocatalytic activity", J. Mol. Catal. A: Chem., 396, 136 (2015). 

  2. H. Liu, T. Lv, X. H. Wu, C. K. Zhu, and Z. F. Zhu, "Preparation and enhanced photocatalytic activity of CdS@RGO core-shell structural microspheres", Appl. Sulf. Sci., 30, 242 (2014). 

  3. T. Y. Li, C. Yang, X. H. Rao, F. Xiao, J. D. Wang, and X. T. Su, "Microstructural study of microwave sintered zirconia for dental applications",Ceram. Int., 41, 1255 (2015). 

  4. W. Liu, Q. Hu, F. Mo, J. Hu, Y. Feng, H. Tang, H. Ye, and S. Miao, "Photo-catalytic degradation of methyl orange under visible light by $MoS_2$ nanosheets produced by $H_2SiO_3$ exfoliation", J. Mol. Catal. A: Chem., 395, 322 (2014). 

  5. S. Ameen, M. S. Akhtar, M. Nazim, and H. S. Shin, "Rapid photocatalytic degradation of crystal violet dye over ZnO flower nanomaterials", Mater. Lett., 96, 228 (2013). 

  6. M. Sun, Y. Wang, Y. Fang, S. Sun, and Z. Yu, "Construction of $MoS_2/CdS/TiO_2$ ternary composites with enhanced photocatalytic activity and stability", J. Alloys Comp., 684, 335 (2016). 

  7. H. J. Fan, C. S. Lu, W. L. W. Lee, M. R. Chiou, and C. C. Chen, "Mechanistic pathways differences between $P25-TiO_2$ and $Pt-TiO_2$ mediated CV photodegradation", J. Hazard. Mater., 185, 227 (2011). 

  8. H. W. Kei and J. C. Yu, "Sonochemical synthesis and visible light photocatalytic behavior of CdSe and $CdSe/TiO_2$ nanoparticles", J. Mol. Catal. A: Chem., 247, 268 (2006). 

  9. Y. B. Chen, L. Z. Wang, G. Q. Lu, X. D. Yao, and L. J. Guo, "Nanoparticles enwrapped with nanotubes: a unique architecture of CdS/titanate nanotubes for efficient photocatalytic hydrogen production from water", J. Mater. Chem., 21, 5134 (2011). 

  10. A. Goyal, S. Bansal, and S. Singhal, "Facile reduction of nitrophenols: Comparative catalytic efficiency of $MFe_2O_4$ (M Ni, Cu, Zn) nano ferrites", Int. J. Hydrogen Energy, 39, 4895 (2014). 

  11. C. V. Rode, M. J. Vaidya, and R. V. Chaudhari, "Synthesis of p-aminophenol by catalytic hydrogenation of nitrobenzene", Org. Process Res. Dev., 3, 465 (1999). 

  12. M. Haruta and M. Date, "Advances in the catalysis of Au nanoparticles", Appl. Catal. A: Gen., 222, 427 (2001). 

  13. K. S. Shin, Y. K. Cho, J. Y. Choi, and K. Kim, "Facile synthesis of silver-deposited silanized magnetite nanoparticles and their application for catalytic reduction of nitrophenols", Appl. Catal. A: Gen., 413, 170 (2012). 

  14. S. K. Ghosh, M. Mandal, S. Kundu, S. Nath, and T. Pal, "Bimetallic Pt-Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution", Appl. Catal. A: Gen., 268, 61 (2004). 

  15. W. R. Zhao, Y. Wang, Y. Yang, J. Tang, and Y. N. Yang, "Carbon spheres supported visible-light-driven $CuO-BiVO_4$ heterojunction: preparation, characterization, and photocatalytic properties", Appl. Catal. B: Environ., 115, 90 (2012). 

  16. H. J. Song, S. You, X. H. Jia, and J. Yang, " $MoS_2$ nanosheets decorated with magnetic $Fe_3O_4$ nanoparticles and their ultrafast adsorption for wastewater treatment", Ceram. Int., 41, 13896 (2015). 

  17. B. Pourabbas and B. Jamshidi, "Preparation of $MoS_2$ nanoparticles by a modified hydrothermal method and the photocatalytic activity of $MoS_2/TiO_2$ hybrids in photo-oxidation of phenol", Chem. Eng. J., 138, 55 (2008). 

  18. X. Z. Wang, S. X. Yang, Q. Yue, F. M. Wu, and J. B. Li, "Response of $MoS_2$ nanosheet field effect transistor under different gas environments and its long wavelength photoresponse characteristics", J. Alloys Comp., 615, 989 (2014). 

  19. J. Lei, Z. Jiang, X. Lu, G. Nie, and C. Wang, "Synthesis of Few-Layer $MoS_2$ Nanosheets-Wrapped Polyaniline Hierarchical Nanostructures for Enhanced Electrochemical Capacitance Performance", Electrochim. Acta, 176, 149 (2015). 

  20. X. Wu, X. Yah, Y. Dai, J. Wang, J. Wang, and X. Cheng, "Facile synthesis of $AgNPs/MoS_2$ nanocomposite with excellent electrochemical properties", Mater. Lett., 152, 128 (2015). 

  21. J. Zhou, H. Xiao, B. Zhou, F. Huang, S. Zhou, and W. Xiao, "Hierarchical $MoS_2-rGO$ nanosheets with high $MoS_2$ loading with enhanced electro-catalytic performance", Appl. Surf. Sci., 358, 152 (2015). 

  22. W. J. Li, E. W. Shi, Z. Z. Chen, H. Ogino, and T. Fukuda, "Hydrothermal synthesis of $MoS_2$ nanowires", J. Cryst. Growth, 250, 418 (2003). 

  23. J. H. Zhan, Z. D. Zhang, X. F. Qian, C. Wang, Y. Xie, and T. Qian, "Solvothermal synthesis of nanocrystalline $MoS_2$ from $MoO_3$ and elemental sulfur", J. Solid State Chem., 141, 270 (1998). 

  24. D. Vollath and D. V. Szabo, "Synthesis of nanocrystalline $MoS_2$ and $WS_2$ in a microwave plasma", Mater. Lett., 35, 236 (1998). 

  25. Q. Li, E. C. Walter, W. E. van der Veer, B. Murray, J. T. Newberg, E. W. Bohannan, J. A. Switzer, J. C. Hemminger, and R. M. Penner, "Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis", J. Phys. Chem. B, 109, 3169 (2005). 

  26. J. T. Richardson, "Electronic properties of unsupported cobaltpromoted molybdenum sulfide", J. Catal., 112, 313 (1988). 

  27. X. Zong, J. F. Han, G. J. Ma, H. J. Yan, G. P. Wu, and C. Li, "Enhancement of photocatalytic $H_2$ evolution on CdS by loading $MoS_2$ as cocatalyst under visible light irradiation", J. Am. Chem. Soc., 130, 7176 (2008). 

  28. Y. Xu and R. Xu, "Nickel-based cocatalysts for photocatalytic hydrogen production", Appl. Surf. Sci., 351, 779 (2015). 

  29. D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, and S. Chen, "Pt nanoparticles/ $MoS_2$ nanosheets/carbon fibers as efficient catalyst for the hydrogen evolution reaction", Elect. Acta, 166, 26 (2015). 

  30. D. H. Youn, C. Jo, J. Y. Kim, J. Lee, and J. S. Lee, "Ultrafast synthesis of $MoS_2$ or $WS_2$ -reduced graphene oxide composites via hybrid microwave annealing for anode materials of lithium ion batteries", J. Power Sources, 295, 228 (2015). 

  31. M. A. Al-Daous, "Graphene- $MoS_2$ composite: Hydrothermal synthesis and catalytic property in hydrodesulfurization of dibenzothiophene", Catal. Commun., 72, 180 (2015). 

  32. X. Zhao, H. Liu, Y. Shen, and J. Qu, "Photocatalytic reduction of bromate at $C_{60}$ modified $Bi_2MoO_6$ under visible light irradiation", Appl. Catal. B: Environ., 106, 63 (2011). 

  33. T. Hasobe, H. Imahori, S. Fukuzumi, and P. V. Kamat, "Light energy conversion using mixed molecular nanoclusters. Porphyrin and $C_{60}$ cluster films for efficient photocurrent generation", J. Phys. Chem. B, 107, 12105 (2003). 

  34. K. Chang, W. Chen, L. Ma, H. Li, H. Li, F. Huang, Z. Xu, Q. Zhang, and J. Y. Lee, "Graphene-like $MoS_2$ /amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries", J. Mater. Chem., 21, 6251 (2011). 

  35. K. Miura and M. Ishikawa, " $C_{60}$ intercalated graphite as nanolubricants", Materials, 3, 4510 (2010). 

  36. Y. Xu, E. Hu, K. Hu, Y. Xu, and X. Hu, "Formation of an adsorption film of $MoS_2$ nanoparticles and dioctyl sebacate on a steel surface for alleviating friction and wear", Tribol. Int., 92, 172 (2015). 

  37. D. James and T. Zubkov, "Photocatalytic properties of free and oxide-supported $MoS_2$ and $WS_2$ nanoparticles synthesized without surfactants", J. Photochem. Photobiol. A: Chem., 262, 45 (2013). 

  38. D. Y. Liang, C. Cui, H. H. Hu, Y. P. Wang, S. Xu, B. L. Ying, P. G. Li, B. Q. Lu, and H. L. Shen, "One-step hydrothermal synthesis of anatase $TiO_2$ /reduced graphene oxide nanocomposites with enhanced photocatalytic activity", J. Alloys Compd., 582, 236 (2014). 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로