$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

용수 및 폐수 처리를 위한 오존 마이크로버블 적용
Application of Ozone Microbubbles in the Field of Water and Wastewater Treatment 원문보기

Ecology and resilient infrastructure, v.3 no.4, 2016년, pp.256 - 262  

남귀웅 (고려대학교 환경생태공학과) ,  정진호 (고려대학교 환경생태공학과)

초록
AI-Helper 아이콘AI-Helper

급격한 산업화와 인구증가로 인한 화학물질 사용량의 증가는 기존의 수 처리 방식의 대부분을 차지하는 생물학적 공정의 한계를 불러온다. 이와 같은 문제를 해결하기 위한 방법으로 고급산화공정의 하나인 오존 마이크로버블 기술이 최근 주목을 받고 있다. 본 논문에서는 마이크로버블의 물리학적 및 화학적 특성에 대해 논하고, 다양한 독성 오염물질의 제거를 중심으로 마이크로버블 오존산화공정을 분석하였다. 또한 다른 처리 기술과 결합한 오존 마이크로버블 기술의 용수 및 폐수처리 전망을 논하였다.

Abstract AI-Helper 아이콘AI-Helper

Rapid industrialization and a significant population growth has led to an increased use of chemicals, which has limited the biological processes that account for most of the existing water and wastewater treatment methods. Ozone microbubble technology, which is one of advanced oxidation processes, h...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 따라서 본 논문에서는 마이크로버블의 물리화학적 특성과 오염물질 분해제거 기작을 분석하고, 오존 마이크로 버블을 이용한 용수 및 폐수 처리 기술의 전망과 발전 가능성을 제시하고자 한다.
  • 오존 산화공정에서 물질 전달율은 기체와 액체 사이의 계면에서 오존이 용해되는 정도를 의미하며 이 값이 높을수록 산화공정의 효율은 높아진다. 따라서 본 논문에서는 오존 마이크로버블을 이용한 오염물질 분해제거와 용수 및 폐수 처리를 중심으로 논하고자 한다 (Table 1).
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
강한 산화제를 이용하는 화학적 산화이 적절한 비용으로 처리효율을 높일 수 있는 공정으로 평가받는 이유는 무엇 때문인가? 고급산화공정 중 강한 산화제를 이용하는 화학적 산화는 난분해성인 유기화합물들을 제거하는데 효율적이며 (Arslan et al. 2001, Tambosi et al. 2009) 기존의 생물학적 공정 기반시설을 최대한 활용할 수 있기 때문에 적절한 비용으로 처리효율을 높일 수 있는 공정이다. 특히 화학적 산화공정에 널리 쓰이는 오존은 자체로도 높은 산화력을 지니고 있으며 (2.
현재의 오존산화공정의 문제들을 해결하기 위해 어떤 연구가 진행 중인가? 2016). 이러한 단점들을 해결하기 위해 오존 사용율을 높일 수 있는 기술 개발의 필요성이 증가하고 있으며, 최근에는 오존 이용 극대화를 위한 마이크로버블 기술이 활발하게 연구되고 있다. 마이크로버블은 작은 버블 크기 (50 μm 미만), 넓은 표면적, 긴 체류시간, 낮은 상승속도, 그리고 높은 내압으로 인해 많은 주목을 받고 있다 (Agarwal et al.
현재의 오존산화공정의 단점은? 2009). 그러나 현재의 오존산화공정은 낮은 오존 용존율과 느린 물질 전달로 인해 오존의 사용율이 낮아 높은 비용이 발생한다는 단점이 있다 (Chu et al. 2008). 또한 체류시간이 짧아 반응시간이 감소하게 되고, 이로 인해 부분적인 산화반응이 이루어져 중간생성물이 잔류하게 된다 (Mestankova et al. 2016).
질의응답 정보가 도움이 되었나요?

참고문헌 (41)

  1. Agarwal, A., Ng, W.J. and Liu, Y. 2011. Principle and applications of microbubble and nanobubble technology for water treatment. Chemosphere 84(9): 1175-1180. 

  2. Ali, U., Syed, J.H., Malik, R.N., Katsoyiannis, A., Li, J., Zhang, G. and Jones, K.C. 2014. Organochlorine pesticides (OCPs) in South Asian region: a review. Science of the Total Environment 476: 705-717. 

  3. Arslan, I. and Balcioglu, I.A. 2001. Advanced oxidation of raw and biotreated textile industry wastewater with $O_3$ , $H_2O_2/UV-C$ and their sequential application. Journal of Chemical Technology and Biotechnology 76(1): 53-60. 

  4. Camel, V. and Bermond, A. 1998. The use of ozone and associated oxidation processes in drinking water treatment. Water Research 32(11): 3208-3222. 

  5. Chu, L.B., Xing, X.H., Yu, A.F., Zhou, Y.N., Sun, X.L. and Jurcik, B. 2007. Enhanced ozonation of simulated dyestuff wastewater by microbubbles. Chemosphere 68(10): 18541860. 

  6. Chu, L.B., Xing, X.H., Yu, A.F., Sun, X.L. and Jurcik, B. 2008. Enhanced treatment of practical textile wastewater by microbubble ozonation. Process Safety and Environmental Protection 86(5): 389-393. 

  7. Corona-Vasquez, B., Samuelson, A., Rennecker, J.L. and Marinas, B.J. 2002. Inactivation of Cryptosporidium parvum oocysts with ozone and free chlorine. Water Research 36(16): 4053-4063. 

  8. Facile, N., Barbeau, B., Prevost, M. and Koudjonou, B. 2000. Evaluating bacterial aerobic spores as a surrogate for Giardia and Cryptosporidium inactivation by ozone. Water Research 34(12): 3238-3246. 

  9. Ghosh, P. 2009. Colloid and Interface Science. PHI Learning Private. Ltd, New Delhi, India. 

  10. Gracia, R., Aragues, J. L. and Ovelleiro, J.L. 1996. Study of the catalytic ozonation of humic substances in water and their ozonation byproducts. Ozone: Science & Engineering 18(3): 195-208. 

  11. Ikeura, H., Kobayashi, F. and Tamaki, M. 2011. Removal of residual pesticide, fenitrothion, in vegetables by using ozone microbubbles generated by different methods. Journal of Food Engineering 103(3): 345-349. 

  12. Jabesa, A. and Ghosh, P. 2016a. Removal of dimethyl phthalate from water by ozone microbubbles. Environmental Technology 27: 1-11. 

  13. Jabesa, A. and Ghosh, P. 2016b. Removal of diethyl phthalate from water by ozone microbubbles in a pilot plant. Journal of Environmental Management 180: 476-484. 

  14. Kerfoot, W.B. and McGrath, A. 2001. Microbubble oxidation smokes MTBE and BTEX. Contaminated Soil Sediment and Water Spring (Special Issue): 77-78. 

  15. Kerfoot, W.B. and LeCheminant, P. 2003. Ozone microbubble sparging at a California site. In, Moyer, E.E. and Kostecki, P.T. (eds.), MTBE Remediation Handbook. Springer, Amherst, Massachusetts, USA. pp. 455-472. 

  16. Kerfoot, W.B., Ehleringer, B. and Muncy, J. 2008. Ozone sparging closure of an industrial VOC spill site adjacent to a water supply well site. Ozone: Science & Engineering 30(1): 88-92. 

  17. Khadhraoui, M., Trabelsi, H., Ksibi, M., Bouguerra, S. and Elleuch, B. 2009. Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse. Journal of Hazardous Materials 161(2): 974-981. 

  18. Khuntia, S., Majumder, S.K. and Ghosh, P. 2012. Removal of ammonia from water by ozone microbubbles. Industrial & Engineering Chemistry Research 52(1): 318-326. 

  19. Khuntia, S., Majumder, S.K. and Ghosh, P. 2015. A pilot plant study of the degradation of Brilliant Green dye using ozone microbubbles: mechanism and kinetics of reaction. Environmental Technology 36(3): 336-347. 

  20. Khuntia, S., Majumder, S.K. and Ghosh, P. 2016. Catalytic ozonation of dye in a microbubble system: hydroxyl radical contribution and effect of salt. Journal of Environmental Chemical Engineering 4(2): 2250-2258. 

  21. Kim, C.S., Yu, S.Y., Lee, G.I., Kim, S.H., Lee, J.W. and Song, J.K. 2014. Sterilizing effect of plant pathogenic fungi using ozone microbubble. Protected Horticulture and Plant Factory 23(3): 250-255. (in Korean) 

  22. Lee, I., Lee, E., Lee, H. and Lee, K. 2011. Removal of COD and color from anaerobic digestion effluent of livestock wastewater by advanced oxidation using microbubbled ozone. Applied Chemistry for Engineering 22(6): 617-622. 

  23. Lopez-Lopez, A., Pic, J.S. and Debellefontaine, H. 2007. Ozonation of azo dye in a semi-batch reactor: a determination of the molecular and radical contributions. Chemosphere 66(11): 2120-2126. 

  24. Lucas, M.S., Peres, J.A. and Puma, G.L. 2010. Treatment of winery wastewater by ozone-based advanced oxidation processes ( $O_3$ , $O_3/UV$ and $O_3/UV/H_2O_2$ ) in a pilot-scale bubble column reactor and process economics. Separation and Purification Technology 72(3): 235-241. 

  25. Mestankova, H., Parker, A.M., Bramaz, N., Canonica, S., Schirmer, K., von Gunten, U. and Linden, K.G. 2016. Transformation of contaminant candidate list (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: assessment of biological effects. Water Research 93: 110-120. 

  26. Osbeck, S., Bradley, R.H., Liu, C., Idriss, H. and Ward, S. 2011. Effect of an ultraviolet/ozone treatment on the surface texture and functional groups on polyacrylonitrile carbon fibres. Carbon 49(13): 4322-4330. 

  27. Suty, H., De Traversay, C. and Cost, M. 2004. Applications of advanced oxidation processes: present and future. Water Science and Technology 49(4): 227-233. 

  28. Takahashi, M. 2005. $\zeta$ potential of microbubbles in aqueous solutions: electrical properties of the gas-water interface. The Journal of Physical Chemistry B 109(46): 21858-21864. 

  29. Takahashi, M., Chiba, K. and Li, P. 2007. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus. The Journal of Physical Chemistry B 111(6): 1343-1347. 

  30. Tambosi, J.L., De Sena, R.F., Gebhardt, W., Moreira, R.F.P.M., Jose, H.J. and Schroder, H.F. 2009. Physicochemical and advanced oxidation processes-a comparison of elimination results of antibiotic compounds following an MBR treatment. Ozone: Science & Engineering 31(6): 428-435. 

  31. Vandevivere, P.C., Bianchi, R. and Verstraete, W. 1998. Review: treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. Journal of Chemical Technology and Biotechnology 72(4): 289-302. 

  32. Walker, A.B., Tsouris, C., DePaoli, D.W. and Thomas Klasson, K. 2001. Ozonation of soluble organics in aqueous solutions using microbubbles. Ozone: Science & Engineering 23(1): 77-87. 

  33. Wang, C., Yediler, A., Lienert, D., Wang, Z. and Kettrup, A. 2003. Ozonation of an azo dye CI Remazol Black 5 and toxicological assessment of its oxidation products. Chemosphere 52(7): 1225-1232. 

  34. Wu, C.H., Kuo, C.Y. and Chang, C.L. 2008. Homogeneous catalytic ozonation of CI Reactive Red 2 by metallic ions in a bubble column reactor. Journal of Hazardous Materials 154(1): 748-755. 

  35. Xia, Z. and Hu, L. 2016. Remediation of organics contaminated groundwater by ozone micro-nano bubble. Japanese Geotechnical Society Special Publication 2(57): 1978-1981. 

  36. Xu, P., Janex, M.L., Savoye, P., Cockx, A. and Lazarova, V. 2002. Wastewater disinfection by ozone: main parameters for process design. Water Research 36(4): 1043-1055. 

  37. Xu, Z., Mochida, K., Naito, T. and Yasuda, K. 2012. Effects of operational conditions on 1, 4-dioxane degradation by combined use of ultrasound and ozone microbubbles. Japanese Journal of Applied Physics 51(7S): 07GD08. 

  38. Zhang, F., Xi, J., Huang, J.J. and Hu, H.Y. 2013. Effect of inlet ozone concentration on the performance of a micro-bubble ozonation system for inactivation of Bacillus subtilis spores. Separation and Purification Technology 114: 126-133. 

  39. Zheng, T., Wang, Q., Zhang, T., Shi, Z., Tian, Y., Shi, S., Smale, N. and Wang, J. 2015a. Microbubble enhanced ozonation process for advanced treatment of wastewater produced in acrylic fiber manufacturing industry. Journal of Hazardous Materials 287: 412-420. 

  40. Zheng, T., Zhang, T., Wang, Q., Tian, Y., Shi, Z., Smale, N. and Xu, B. 2015b. Advanced treatment of acrylic fiber manufacturing wastewater with a combined microbubble-ozonation/ultraviolet irradiation process. RSC Advances 5(95): 77601-77609. 

  41. Zhu, X.F. and Xu, X.H. 2004. The mechanism of Fe (III)-catalyzed ozonation of phenol. Journal of Zhejiang University Science 5(12): 1543-1547. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로