$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] 한국 산림유존목의 다양성, 공간 분포 및 생태 특성
Diversity, Spatial Distribution and Ecological Characteristics of Relict Forest Trees in South Korea 원문보기

韓國林學會誌 = Journal of Korean Forest Society, v.105 no.4, 2016년, pp.401 - 413  

조현제 (동양대학교 산림비지니스전공) ,  이철호 (국립수목원 산림자원보존과) ,  신준환 (동양대학교 산림비지니스전공) ,  배관호 (경북대학교 생태환경시스템학부) ,  조용찬 (국립수목원 산림자원보존과) ,  김준수 (자연과숲연구소)

초록
AI-Helper 아이콘AI-Helper

우리나라 산림의 이용 문화 및 다양한 교란사는 생물다양성 및 탄소저장의 생태학적, 그리고 인간 활동 및 자연사를 포함하는 문화적 기능을 수행하고 있는 오래된 큰 나무로서 유존목(relic tree)의 희귀성 및 보전 활동의 배경이 된다. 본 연구는 최근 10년간 고해상도 칼라항공사진과 현장답사 자료를 토대로 남한 전역의 산지에서 자연적으로 성립 및 분포하고 있는 산림유존목(줄기 둘레 300 cm 이상)의 다양성, 상태 및 그것의 서식 환경을 평가하고, 이를 통한 보전 기반을 조성하는데 있다. 본 연구를 통해 지금까지 확인된 남한 지역의 산림유존목은 총 54분류군(18과 32속 48종 1아종 3변종 및 2품종)으로서 우리나라 교목류의 약 22%에 해당하였다. 837개체의 산림유존목은 개체군이 풍부한 소나무과, 낙엽성 참나무과 및 장미과 수종에서 풍부하였다. 산림유존목은 인간의 활동 및 강도 구배에 따라 주로 고지대(평균해발 1,200 m), 중경사도 이상 및 북사면 지형에서 주로 잔존하고 있었다. 조사된 개체들은 '큰 가지 결손'상태(55.6%)가 가장 많았고, 이와 관련하여 생육 임분의 수관층 피도는 80% 이하로 다소 낮게 나타났다. 종합적으로, 산림유존목은 기후, 기상 및 생물학적 요인들의 복잡한 과정을 통하여 현재에 잔존하고 있는 중요한 산림생물다양성 요소로서 평가되었다. 향후, 산림생태계 내에서의 역할 및 기능, 개체 및 생육지를 활용한 현지 내 외 프로그램, 그리고 보전 정책화를 위한 활동이 요구된다.

Abstract AI-Helper 아이콘AI-Helper

Forest resources utilization and variable disturbance history have been affected the rarity and conservation value of forest relict trees, which served as habitat for forest biodiversity, important carbon stock and cultural role include human and natural history in South Korea. This study was conduc...

Keyword

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 유존(留存)은 ‘보존하다’, ‘현존하다’ 및 ‘남겨 두다’의 의미를 가지고 있어 연구의 대상이 되는 나무의 다양한 역할과 부합하여 활용하고자 한다.
  • 본 연구에서는 남한 지역에서 산림유존목의 다양성과 객관적 분포를 파악함과 동시에, 그 개체들의 상태 및 생태환경의 특성을 분석하여 우리나라 산림생태계의 온전 성과 유전적 다양성을 지속적으로 담보하기 위한 체계적 보전 및 관리 기반 구축에 필요한 기초자료를 제공하는데 목적이 있다.
  • 본 연구의 수행을 통하여 남한 지역 내 산림유존목의 현황과 생육 특성을 파악할 수 있었다. 조사 결과는 모두 DB화 되었으며, 대부분의 조사 장소는 모니터링 체계를 적용하여 반복 측정이 가능하도록 구성되어 있다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
유존목과 같은 크고 오래된 나무의 분포에 영향을 주는 요인은? , 2016). 넓은 공간 규모에서는 강수량, 기온, 그리고 모암과 토양질과 같은 요인 들을 생각할 수 있다. 그러나 매우 넓은 환경(강수량) 및 생리(증발산량) 특성 폭에 의해 광역적으로 분포하는 큰 나무들 역시 존재하고 있다(Tng et al., 2012). 효율적인 번식(바람에의 한 종자 전파 등)에 의한 풍부한 개체군 밀도와 같은 종의 특성 역시 유존목 분포의 배경이 된다 (Slik et al., 2013). 또한 경관 수준에서는 개발지역과의 거리, 입지 환경 (해발, 경사도, 토양 습도 등), 그리고 인간 간섭의 정도에 영향을 받을 수 있다. 그리고 지역 생태계의 화재 빈도 및 강도(Barlow et al., 2003; Lindenmayer et al., 2012), 곤충 피해, 태풍, 그리고 산업화와 산성비에 의한 병원균(Palik et al., 2011)과 같은 외부 요인으로서의 부정적 사건들은 유존목의 분포 그리고 다양성에도 역시 영향을 주게 된다. 따라서 유존목의 분포 및 다양성은 다양한 시공간적 요인들의 조합의 결과이므로 진화적 관점이 포함되어야 한다(Lindenmayer and Laurance, 2016).
우리나라에서 산림유존목을 보전하는 것이 필요한 이유는? 이러한 시공간적인 인간의 농업 활동은 한반도에서 노령림(old-growth forest) 또는 산림유존 목과 같은 산림 경관 요소의 희귀성을 가져온 배경이 된다. 우리나라에서 산림유존목에 대한 기초 평가 및 관련 보전의 필요성은 우리나라 산림에서 그것의 희귀성과 함께 동공과 같은 생물서식공간, 경관 내 부족한 잠재적 사목 자원(snag)(Cain, 1996) 및 탄소축적의 다양한 생태 기능을 들 수 있으며, 그것의 크기와 오랜 기간에 따른 복잡하거나 다양한 형태에서 오는 심적 감정 등이 포함될 수 있다.
산림유존목의 정의는 무엇인가? , 2012). 앞서 언급한 바와 같이, 산림유존목의 정의는 그것이 성립하고 있는 생활권 유존목인 일반 노거수(보호 수의 일부)와는 달리 산림생태계에서 자연적으로 성립하여 과거의 기후 및 기타 환경조건에서 견디어 현재까지 살아남은 크고 오래된 잔존목(remnant trees)으로 규정할 수 있다(Korea Forest Service, 2016). 북미와 유럽연합에 서는 산림유존목과 같은 크고 오래된 나무를 “Big Trees” 또는 “Ancient & Veteran Trees”라 부르고 있으며 대개 수령 150년 이상, 줄기둘레 300cm이상을 기준으로 하고 있다(Franklin, 2012; Douglas, 2012).
질의응답 정보가 도움이 되었나요?

참고문헌 (60)

  1. Barlow, J., Peres, C.A., Lagan, B.O., and Haugaasen, T. 2003. Large tree mortality and the decline of forest biomass following Amazonian wildfires. Ecology Letters 6: 6-8. 

  2. Braun-Blanquet, J. 1964. Pflanzensoziologie Grundzuge der Vegetationskunde. 3rd ed., Springer, New York. pp. 865. 

  3. Busing, R.T., Halpern, C.B., and Spies, T.A. 1995. Ecology of Pacific yew (Taxus brevifolia) in western Oregon and Washington. Conservation Biology 9: 1199-1207. 

  4. Cain, M.D. 1996. Hardwood sang fragmentation in a Pineoak forest of Southeastern Arkansas. The American Midland Naturalist 136: 72-823. 

  5. Camarero, J., Gutierrez, E., Fortin, M.-J., and Ribbens, E. 2005. Spatial patterns of tree recruitment in a relict population of Pinus uncinata: forest expansion through stratified diffusion. Journal of Biogeography 32: 1979-1992. 

  6. Cecile, J., Silva, L.R. and Anand, M. 2013. Old trees: large and small. Science 339(6122): 904-905. 

  7. Cho, Y.C., Kim, K.S., Pi, J.H. and Lee, C.S. 2016. Restoration effects influenced by plant species and landscape context in Young-il region, Southeast Korea: Structural and compositional assessment on restored forest. Journal of Ecology and Environment 39: 1-10. 

  8. Costanza, R., d'Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O'Neill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., and van den Belt, M. 1997. The value of the world's ecosystem services and natural capital. Nature 387: 253-260 

  9. Davis, J.W. 1983. Snags are for wildlife, p. 4-9. In: Snag habitat management: proceedings of the symposium. June 7-9, 1983, Northern Arizona University, Flagstaff. U. S. Forest Service. General Techical. Report. 

  10. Douglas, M. 2012. Big, old trees in decline wolrdwide. http:// www.livescience.com/25310-big-trees-in-decline.html(2016. 8. 15.). 

  11. Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., Carpenter, S.R., Essington, T.E., Holt, R.D., Jackson, J.B., Marquis, R.J., Oksanen, L., Oksanen, T., Paine, R.T., Pikitch, E.K., Ripple, W.J., Sandin, S.A., Scheffer, M., Schoener, T.W., Shurin, J.B., Sinclair, A.R., Soule, M.E., Virtanen, R., and Wardle, D.A. 2011. Trophic downgrading of planet Earth. Science 333(6040): 301-306. doi:10.1126/science.1205106. 

  12. Fedrigoa, M., Kasela, S., Bennettb, L.T., Roxburghc S.H., and Nitschkea, C.R. 2014. Carbon stocks in temperate forests of south-eastern Australia reflect large tree distribution and edaphic conditions. Forest Ecology and Management 334(15): 129-143. 

  13. Franklin, J.F. 2012. The importance of Big, Old Trees. https://www.americanforests.org/blog/the-importance-of-big-oldtrees/(2016.8.15.). 

  14. Franklin, J.F., Lindenmayer, D.B., MacMahon, J.A., McKee, A., Magnuson, J., Perry, D.A., Waide, R., and Foster, D.R. 2000. Threads of continuity. Conservation in Practice 1: 8-17 

  15. Franklin, J.F., Spies, T.A., Pelt, R.V., Carey, A.B., Thornburgh, D.A., Berg, D.R., Lindenmayer, D.B., Harmon, M.E., Keeton, W.S., Shaw, D.C., Bible, K., and Chen, J. 2002. Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas-fir forests as an example. Forest Ecology and Management 155: 399-423. 

  16. Franline, J.F., Shugart, H.H., and Harmon, M.E. 1987. Tree death as an ecological process. The causes, consequences, and variability of three mortality. Bioscience 37: 550-556. 

  17. Guerrant, E.O., Havens, K., and Maunder, M. 2004. Ex Situ Plant Conservation: Supporting Species Survival in the Wild. Washington(DC), Island Press, Washington. pp. 419-438. 

  18. Harvey, C.A. and Haber, W.A. 1988. Remnant trees and the conservation of biodiversity in Costa Rican pastures. Agroforestry Systems 44(1): 37-68. 

  19. Heywood, V. 2009. Botanic gardens and genetic conservation. Sibbaldia: the Journal of Botanic Garden Horticulture 7: 5-18. 

  20. Hirschmugla, M., Ofnera, M., Raggamb, J., and Schardta. M. 2007. Single tree detection in very high resolution remote sensing data. Remote Sensing of Environment 110(4): 533-544. 

  21. Ikin, K., Mortelliti, A., Stein, J., Michael, D., Crane, M., Okada, S., Wood, J., and Lindenmayer, D. 2015. Woodland habitat structures are affected by both agricultural land management and abiotic conditions. Landscape Ecology 30(8): 1387-1403. 

  22. Iverson, L.R. and Prasad, A.M. 2001. Potential changes in tree species richness and forest community types following climate change. Ecosystems 4: 186-199. 

  23. Jayasuriya, M.D.A., Dunn, G., Benyon, R., and O'Shaughnessy, P.J. 1993. Some factors affecting water yield from mountain ash (Eucalyptus regnans) dominated forests in south-east Australia. Journal of Hydrology 150: 345-367. 

  24. Kang, M.I. 2013. Stock-farming folklife and extinction of Mt. Halla sangsan-graze during the modern and contemporary. Tamla Munwha 43: 137-195. (In Korean with English abstract) 

  25. Keeton, W.S. and Franklin, J.F. 2005. Do remnant old-growth trees accelerate rates of succession in mature Douglas-fir forests?. Ecological Monographs 75: 103-118. 

  26. Keith, H., Lindenmayer, D.B., Mackey, B.G., Blair, D., Carter, L., McBurney, L., Okada, S., and Konishi-Nagano, T. 2014. Accounting for biomass carbon stock change due to wildfire in temperate forest landscapes in Australia. PLoS One 9: e107126. 

  27. Kim, J.S. and Kim, T.Y. 2011. Woody Plants of Korean Peninsula. Dolbegae, Paju. (In Korean) 

  28. Korea Forest Conservation Association. 2007. Forest relict plant species and large old trees: Bakdudaegan Areas(I). pp.555. (In Korean) 

  29. Korea Forest Service. 2015. Korean Plant Names Index. http://www.nature.go.kr/kpni/SubIndex.do(2016.7.1.) (In Korean). 

  30. Korea Forest Service. 2016. Conservation and management technique for forest relict trees(I). Research and Development Project of forestry technology. 1st Research Report. pp. 55. (In Korean). 

  31. Korea Green Promotion Agency. 2013. Korea Big Tree (round-up volume). pp. 447. (In Korean). 

  32. Kozlowski, G., Gibbs, D., Huan, F., Frey, D., and Gratzfeld, J. 2012. Conservation of threatened relict trees through living ex situ collections: lessons from the global survey of the genus Zelkova (Ulmaceae). Biodiversity and Conservation 21(3): 671-685. 

  33. Laurance, W. 2012. How the mighty are fallen. New Scientist 213: 39-41. 

  34. Lindenmayer, D.B. and Laurance, W.F. 2016. The ecology, distribution, conservation and management of large old trees. Biological Reviews. doi:10.1111/brv.12290. 

  35. Lindenmayer, D.B., Blanchard, W., Blair, D., McBurney, L., and Banks, S. 2016. Environmental and human drivers influencing large old tree abundance in Australian wet forests. Forest Ecology and Management 372: 226-235. 

  36. Lindenmayer, D.B., Blanchard, W., McBurney, L., Blair, D., Banks, S., Likens, G.E., Franklin, J.F., Laurance, W.F., Stein, J.A., and Gibbons, P. 2012. Interacting factors driving a major loss of large trees with cavities in a forest ecosystem. PLoS One 7(10): e41864. 

  37. Lindenmayer, D.B., Laurance, W.F., and Franklin, J.F. 2012. Global decline in large old trees. Science 338: 1305-1306. 

  38. Lopez-Tirado, J. and Hidalgo, P.J. 2014. A high resolution predictive model for relict trees in the Mediterranean-mountain forests (Pinus sylvestris L., P. nigra Arnold and Abies pinsapo Boiss.) from the south of Spain: a reliable management tool for reforestation. Forest Ecology and Management 330: 105-114. 

  39. Loreau, M., Naeem, S., Inchausti, P., Bengtsson, J., Grime, J.P., Hector, A., Hooper, DU., Huston, M.A., Raffaelli, D., Schmid, B., Tilman, D., and Wardle, DA. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804-808. 

  40. Lutz, J.A., Larson, A.J., Swanson, M.E., and Freund, J.A. 2012. Ecological Importance of Large-Diameter Trees in a Temperate Mixed-Conifer Forest. PLoS ONE 7(5): e36131. 

  41. Mattias, E., Anna-Maria, E., and Marc-Andre, V. 2016. The importance of large-tree retention for the persistence of old-growth epiphytic bryophyte Neckera pennata in selection harvest systems. Forest Ecology and Management 372: 143-148. 

  42. Mcclelland, B.R. and Frissell, S.S. 1975. Identifying forest snags useful for hole-nesting birds. Journal of Forestry 73: 414-417. 

  43. Meyer, R.L. 1992. Management of dead trees and stubs. American Pulpwood Association, Technical Release 92-R-l1. pp. 2. 

  44. Miehe, G., Miehe, S., Will, M., Opgenoorth, L., Duo, L., Dorgeh, T., and Liu, J. 2008. An inventory of forest relicts in the pastures of Southern Tibet(Xizang A.R., China). Plant Ecology 194(2): 157-177. 

  45. Moga, C.I., Samoila, C., Ollerer, K., Bancila, R.I., Reti, K.- O., Craiveanu, C., Poszet, S., Rakosy, L., and Hartel, T. 2016. Environmental determinants of the old oaks in wood-pastures from a changing traditional social-ecological system of Romania. Ambio 45: 480-489. 

  46. Palik, B.J., Ostry, M.E., Venette, R.C., and Abdela, E. 2011. Fraxinus nigra (black ash) dieback in Minnesota: regional variation and potential contributing factors. Forest Ecology and Management 261: 128-135. 

  47. Petit, R.J., Hampe, A., and Cheddadi, R. 2005. Climate change and tree phylogeography in the Mediterranean. Taxonomy 54: 877-885. 

  48. Phillips, N.G., Buckley, T.N. and Tissue, D.T. 2008. Capacity of old trees to respond to environmental change. Journal of Integrative Plant Biology 50: 1355-1364. 

  49. QGIS Development Team. 2015. QGIS ver. 2.12.2. http://www.qgis.org/ko/site/forusers/download.html(2016. 2.17). 

  50. Remm, J. and Lohmus, A. 2011. Tree cavities in forests - the broad distribution pattern of a keystone structure for biodiversity. Forest Ecology and Management 262: 579-585. 

  51. Ripple, W.J., Estes, J.A., Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., Berger, J., Elmhagen, B., Letnic, M., Nelson, M.P., Schmitz, O.J., Smith, D.W., Wallach, A.D., and Wirsing, A.J. 2014. Status and ecological effects of the world's largest carnivores. Science 343(6167): 1241484. doi: 10.1126/science.1241484. 

  52. Salick, J., Amend, A., Anderson, D., Hoffmeister, K., Gunn, B. and Zhendong, F. 2007. Tibetan sacred sites conserve old growth trees and cover in the eastern Himalayas. Biodiversity and Conservation 16: 693-706. 

  53. Slik, J.W.F., Paoli, G., McGuire, K., Amaral, I., Barroso, J., Bastian, M., Blanc, L., Bongers, F., Boundja, P., Clark, C., Collins, M., Dauby, G., Ding, Y., Doucet, J.-L., Eler, E., Ferreira, L., Forshed, O.,Fredriksson, G., Gillet, J.-F., Harris, D., Leal, M., Laumonier, Y., Malhi, Y., Mansor, A., Martin, E., Miyamoto, K., Araujo-Murakami, A., Nagamasu, H., Nilus, R., Nurtjahya, E., Oliveira, A., Onrizal, O., Parada-Gutierrez, A., Permana, A., Poorter, L., Poulsen, J., Ramirez-Angulo, H., Reitsma, J., Rovero, F., Rozak, A., Sheil, D., Silva-Espejo, J., Silveira, M., Spironelo, W., ter Steege, H., Stevart, T., Navarro-Aguilar, G.E., Sunderland, T., Suzuki, E., Tang, J., Theilade, I., van der Heijden, G., van Valkenburg, J., Do, T.V., Vilanova, E., Vos, V., Wich, S., Woll, H., Yoneda, T., Zang, R., Zhang, M.- G., and Zweifel, N. 2013. Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography 22(12): 1261-1271. 

  54. Spies, T.A. and Franklin, J.F. 1991. The structure of natural young, mature and old-growth Douglas-fir forests in Oregon and Washington. pp. 91-109. In: Ruggiero, L.F., Aubry, K.B., Carey, A.B., and Huff, M.H. coordinators. Wildlife and vegetation of unmanaged Douglas-fir forests. General technical report PNW-GTR-285. U.S. Forest Service, Portland, Oregon. 

  55. Stephenson, N.L., Das, A.J., Condit, R., Russo, S.E., Baker, P.J., Beckman, N.G., Coomes, D.A., Lines, E.R., Morris, W.K., Ruger, N., lvarez, E., Blundo, C., Bunyavejchewin, S., Chuyong, G., Davies, S.J., Duque, A., AEwango, C.N., Flores, O., Franklin, J.F., Grau, H.R., Hao, Z., Harmon, M.E., Hubbell, S.P., Kenfack, D., Lin, Y., Makana, J.R., Malizia, A., Malizia, L.R., Pabst, R.J., Pongpattananurak, N., Su, S.H., Sun, I-F., Tan, S., Thomas, D., van Mantgem, P.J., Wang, X., Wiser, S.K., and Zavala, M.A. 2014. Rate of tree carbon accumulation increases continuously with tree size. Nature 507: 90-93. 

  56. Tng, D.Y.P., Williamson, G.J., Jordan, G.J., and Bowman, D.M.J.S. 2012. Giant eucalypts-globally unique fire-adapted rainforest trees? New Phytologist 196: 1001-1014. 

  57. Van Pelt, R. 2007. Identifying Mature and Old Forests in Western Washington. Washington State, Department of Natural Resources, Olympia, WA. pp. 108. 

  58. Vanak, A.T., Shannon, G., Thaker, M., Page, B., Grant, R., and Slotow, R. 2011. Biocomplexity in large tree mortality: interactions between elephant, fire and landscape in an African savanna. Ecography 35: 315-321. 

  59. Werner, F.A., Homeier, J., and Gradstein, S.R. 2005. Diversity of vascular epiphytes on isolated remnant trees in the montane forest belt of southern Ecuador. Ecotropica 11: 21-40. 

  60. Wood, J. and Lindenmayer, D.B. 2015. Woodland habitat structures are affected by both agricultural land management and abiotic conditions. Landscape Ecology 30: 1387-1403. 

저자의 다른 논문 :

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로