$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

제주도 서귀포지역 천연탄산수의 기원과 수리화학특성
Origin and Hydrochemical Characteristics of Natural Carbonated Water at Seoqwipo, Jeju Island 원문보기

지질공학 = The journal of engineering geology, v.26 no.4, 2016년, pp.515 - 529  

정찬호 (대전대학교 건설안전방재공학과) ,  이용천 (대전대학교 건설안전방재공학과) ,  이유진 (대전대학교 건설안전방재공학과) ,  최현영 (대전대학교 건설안전방재공학과) ,  고기원 (제주특별자치도개발공사 지역가치연구팀) ,  문덕철 (제주특별자치도개발공사 지역가치연구팀) ,  정차연 (한국농어촌공사제주지역본부 지하수지질부) ,  조시범 (한국농어촌공사제주지역본부 지하수지질부)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 제주 서귀포지역에서 산출되는 온천수 2지점과 탄산수 2지점에 대한 화학성분, CFCs (Chlorofluorocarbons) 동위원소, ${\delta}^{18}O$, ${\delta}D$, ${\delta}^{13}C$ 동위원소, 영족기체(He, Ne) 동위원소 분석을 통하여 탄산온천수와 탄산수의 수리화학적 특성, 생성연령, 영족기체의 기원과 $CO_2$ 가스의 기원을 해석하였다. 연구지역의 탄산수의 pH는 6.21~6.84의 범위의 약산성과 매우 높은 전기전도도 값($1,928{\sim}4,720{\mu}S/cm$)의 특성을 보인다. 화학적 유형은 $Mg(Ca,Na)-HCO_3$ 내지는 $Na(Ca,Mg)-HCO_3$ 유형을 보인다. 환경추적자인 CFCs 농도를 이용하여 지하수 연령측정결과, 탄산수는 약 47.5~57.2년, 지하수는 약 30.3~49.5년으로 추정되었다. 탄산수의 ${\delta}^{13}C$값은 -1.77~-7.27‰의 범위를 보여 $CO_2$ 가스의 기원은 심부기원과 일부 심부-무기기원의 혼합 기원으로 도시되었지만, 영족기체 조성비($^3He/^4He$, $^4He/^{20}Ne$)에서 헬륨가스가 심부기원의 농도가 절대적으로 높은 값을 보여 화산활동과 관련한 심부 마그마 기원임을 보여준다.

Abstract AI-Helper 아이콘AI-Helper

In this study, geochemical composition, CFCs (Chlorofluorocarbons), ${\delta}^{18}O$, ${\delta}D$, ${\delta}^{13}C$ isotopes and noble gases isotopes (He, Ne) were analyzed to determine their recharge age, source of $CO_2$ gas and noble gases of carbonated...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • CFCs에 대한 분석방법은 과거에 해양학 분야에서 개발·이용되었으며, 지하수 분야에서는 1990년대에 CFCs에 대한 연구가 이루어졌다. 본 연구에서는 CFC-11, CFC-12, CFC-113의 세 종류의 CFCs 화합물을 환경추적자로 이용하여 지하수 연령을 결정하고자 하였다. 연령 측정에 이용된 대기 CFCs 농도 이력 곡선은 북미평균곡선(USGS, 2015)을 이용하였다(Fig.
  • 본 연구에서는 제주 서귀포지역에 산출되는 산방산 탄산 온천, 디아넥스 탄산온천, 그리고 제주개발공사에서 개발한 탄산지하수를 대상으로 수리화학 특성과 함양시기, 그리고 CO2 가스의 기원을 밝히고자하였다. 이를 위하여 환경추적자인 CFCs 동위원소 분석을 통하여 지하수의 연대를 측정하였으며, δ13CDIC 동위원소와 3He/4He 동위원소비룰 포함한 영족기체 분석을 통하여 탄산가스의 기원을 해석하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
국내 천연탄산수는 어디서 주로 산출되는 것으로 알려져 있나? 국내 천연탄산수는 경북 북부지역, 강원도 오대산-설악산 일대, 충청지역 청원-충주일대에 걸쳐 주로 산출되는 것으로 알려져 있으며, 그들의 산출은 대부분 쥬라기화강암과 밀접한 관계를 보인다. 즉, 쥬라기화강암과 편마암 내지는 백악기 퇴적암과의 지질경계, 그리고 화강암내 단층대, 그리고 암맥군 등을 따라서 주로 산출된다(Jeong, 2002, 2004; Jeong et el.
제주지역 탄산수의 주요 화학성분 함량의 특징은? 3). 제주지역 탄산수는 Mg과 K의 함량이 매우 높은 것이 특징이며, Ca, Na 등 전반적인 주요 양이온의 함량이 높은 것이 특징이다.
국내 탄산수의 수리화학적 특성은? 국내 탄산수의 수리화학적 특성은 pH 6.0 내외의 약산성으로 이온성분의 함량이 일반지하수에 비하여 높고, 탄산 및 중탄산의 적절한 조화로 소화기능 개선 및 위장병 치료, 피부병도 효능이 있는 것으로 알려져 있다. 일부 산출지역에서는 철, 망간, 불소의 함량이 음용수 수질기준을 크게 초과하는 곳도 있으나(Jeong et al.
질의응답 정보가 도움이 되었나요?

참고문헌 (45)

  1. Aka, F. T., Kusakabe, M., Nagiouang, K., and Tanyileke, G., 2001, Noble gas isotopic compositions and water/gas chemistry of soda springs from the islands of bioko, Sotome and Annobon, along with Cameroon Volcanic Line, West Africa. Applied Geochemistry, 16(3), 323-338. 

  2. Appelo, C. P. J. and Postma, D., 1993, Geochemistry, groundwater and pollution, A. A. Balkema Publisher, 90-94. 

  3. Atekwana E. A. and Krishnamurthy R. V., 1998, Seasonal variations of dissolved inorganic carbon and ${\delta}^{13}C$ of surface waters: application of a modified gas evolution technique, Journal of Hydrology 205(3), 265-278. 

  4. Bakalowicz, M., 1979, Contribution de geochime deseaux a la connaissance de laquifere karstque et de la karstification, PhD thesis, Univ. Pierre et Marie Curie, Paris, France. 

  5. Barnes, I., Irwin, W. P., and White, D. E., 1978, Global distribution of carbon dioxide discharges and major zones of seismicity. Water Resources investigations 78-39 open-file report., U.S geological survey, 1-12. 

  6. Busenberg, E. and Plummer, L. N., 1992, Use of chlorofluorocarbons ( $CCl_3$ F and $CCl_2F_2$ ) as hydrologic tracers and age-dating tools:The alluvium and terrace system of central Oklahoma, Water Resources Research, 28(9), 2257-2283. 

  7. Ceron, J. C., Bosch, A. P., and Galdeano, C. S., 1998, Isotopic identification of $CO_2$ from a deep origin in thermomineral waters of southeastern Spain. Chemical Geology, 149(3), 251-258. 

  8. Choi, H. S., Koh, Y. K., Kim, C. S., Bae, D. S., and Yun, S. T., 2000, Environmental Isotope Characteristics of $CO_2$ -rich Water in The Kangwon Province, The Korean Society of Economic and Environmental Geology, 33(6), 491-504 (in Korean with English abstract). 

  9. Clark, I. and Fritz, P., 1997, Environmental isotopes in hydrology, Lewis publisers, 323p. 

  10. Cornides, I. and Cornides, M., 1983, Isotope geochemical study of the $CO_2$ occurrences in the Eastern Carpathians. Foldt. Kozl, Budapest, 121-125. 

  11. Cornides, I. and Kecskes. A., 1974, A genetic investigation of the carbon dioxide occurrences in the Carpathian Basin, Part II : Hungarian Mining Research Institute Pub., 17, 263-266. 

  12. Craig, H., 1953, The geochemistry of the stable carbon isotopes, Geochimica Et Cosmochimica Acta, 3, 53-92. 

  13. Craig, H., 1961, Isotopic variations in meteoric water, American for the Advancement of Science, 133(3465), 1702- 1703. 

  14. Dansgaard, W., 1964, Stable isotopes in precipitation, Tellus, 16, 436-468. 

  15. Epstein, S. and Mayeda, T. K., 1953, Variation of $^{18}O$ content of waters from natural sources, Geochimica Et Cosmochimica Acta, 4(5), 213-224. 

  16. Greenberg, A. E., Clesceri, L. S., and Eaton, A. D., 1992, Standard methods for the examination of water and waste water, The American Public Health Association, Washington DC, 4-55. 

  17. Griesshaber, E., O'Nions, R. K., and Oxburgh, E. R., 1992, Helium and carbon isotope systematics in crustal fluids from the Eifel, the Rhine Graben and Black Forest, F.R.G. Chemical Geology, 99(4), 213-235. 

  18. Hoefe, J., 1997, Stable Isotope Geochemistry, Springer-Verlag Pub., 212p. 

  19. Irwin, W. P. and Barnes, I., 1980, Tectonic relation of carbon dioxide discharges and earthquakes, Journal of Geophysical Research, 85(B6), 3115-3121. 

  20. Inshibashi, J., Sano, Y., Wakita, H., Gamo, T., Tsutsumi, M., and Sakai, H., 1995, Helium and carbon geochemistry of hydrothermal fluids from the mid-Okinawa Trough Bak arc Basin, southwest of Japan, Chemical Geology, 123(1), 1-15. 

  21. Jeong, C. H., Kim, C. S., Kim, T. K., and Kim, S. J., 1997, Reaction path modelling on geochemical evolution of groundwater and formation of secondary minerals in watergneiss reaction system, Journal of Mineralogical Society of Korea, 10(1), 33-44 (in Korean with English abstract). 

  22. Jeong, C. H., 2002, Genesis and Hydrochemistry of $CO_2$ -rich Springs from Kyungpook Province, Korea, Journal of the Korea Society of Economic and Environmental Geology , 35(2), 121-136 (in Korean with English abstract). 

  23. Jeong C. H., 2004, Hydrochemistry and Formation Environment of $CO_2$ -rich Springs from the Kangwon Province, Korea, Journal of Mineralogical Society of Korea, 17(1), 61-73 (in Korean with English abstract). 

  24. Jeong, C. H., Kim, J. G., and Lee, J. Y., 2001, Occurrence Geochemistry and Origin of $CO_2$ -rich Water from the Chungcheong Area, Korea, Korea Society of Economic and Environmental Geology, 34(2), 227-241 (in Korean with English abstract). 

  25. Jeong, C. H., Yoo, S. W., Kim, K. H., and Nagao, K., 2011, Hydrochemistry and Origin of Noble Gases and $CO_2$ Gas Within Carbonated Mineral Waters in the Kyeoungbuk- Kangwon Province, Korea, The Journal of Engineering Geology, 21(1), 65-77 (in Korean with English abstract). 

  26. Jeong, C. H., Kim, K. H., and Nagao, K., 2012, Hydrogeochemistry and Origin of $CO_2$ and Noble Gases in the Dalki Carbonate Waters of the Chungsong Area, The Journal of Engineering Geology, 22(1), 123-134 (in Korean with English abstract). 

  27. Jeong, C. H. and Jeong, G. Y., 1999, Geochemical Water Quality and Genesis of Carbonated Dalki Mineral Water in the Chungsong Area, Kyungpook, The Korean Society of Economic and Environmental Geology, 32(5), 455-468 (in Korean with English abstract). 

  28. Jeong, C. H., Koh, Y. K., Shin, S. H., Nagao, K., Kim, K. H., and Kim, G. Y., 2009, Hydrochemistry and noble gas origin of hot spring waters of Icheon and Pocheon area in Korea, The Journal of Engineering Geology, 19(4), 529-541 (in Korean with English abstract). 

  29. Koh. Y. K., Yun, S. T., and Kim, C. S., 1999(a), Geochemical Evolution of $CO_2$ -rich Groundwater in the Jungwon Area, The Korean Society of Economic and Environmental Geology, 32(5), 469-483 (in Korean with English abstract). 

  30. Koh. Y. K., Kim, C. S., Bae, D. S., Kim, G. Y., and Chung, H. J., 1999(b), Geochemical Studies of $CO_2$ -rich water in the Chojeong area . Water Chemistry, Journal of the Korean Society of Groundwater Envrionment, 6(4), 159-170 (in Korean with English abstract). 

  31. Lee, K. S., Grundstein, A. J., Wenner, D. B., Choi, M. S., Woo, N. C., and Lee, D. H., 2003, Climatic controls on the stable isotopic composition of precipitation in Northeast Asia, Climate Research, 23, 137-148. 

  32. Lee, K. S., Koh, D. C., Lee, D. H., and Park, W. B., 2002, The temporal and spacial distribution of stable isotope compositions of precipitation in Jeju Island : application to groundwater recharge study, Journal of the Geological Society of Korea, 38(2), 151-161 (in Korean with English abstract). 

  33. Lee, K. S., Wenner, D. B., and Lee, I., 1999, Using H- and Oisotopic data for estimating the relative contributions of rainy and dry season precipitation to groundwater: example from Cheju Island, Korea, Journal of Hydrology, 222(1), 65-74. 

  34. Marques, J. M., Monteiro Santos F. A., Graca, R. C., Castro, R., Aires-Barros, L., and Mendes Victor, L. A., 2001, A geohemical and geophysical approach to derive a conceptual circulation model of $CO_2$ -rich mineral waters: A case study of Vilarelho da Raia, Northern Portugal, Journal of Hydrogeology, 9(6), 584-596. 

  35. Moore, J. G., Bachelder, J. N., and Cunningham, C. G., 1997, $CO_2$ -filled vesicles in mid-ocean basalt, Journal of Volcanology and Geothermal Research, 2(4), 309-327. 

  36. Morrison, J., Brockwell, T., Merren, T., Fourel, F., and Phillips, A. M., 2001. On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples, Analytical Chemistry, 73(15), 3570-3575. 

  37. Park, J. S., Jeong, C. J., Nagao, K., Yang J. H., Sumino, H., Kim K. H., Kim, M. S., Lee, J . I., Park. C. H., Koh, Y. K., and Hur, S. D., 2016, Hydrochemistry and noble gas geochemistry of geothermal waters in Chungcheong Province, South Korea, Geochemical Journal, Vol. 50(1), 89-103. 

  38. Park, K. H., Cho, D. L., and Kim, J. C., 2000(a), Geologic report of the moseulpo-hanlim sheet (scale 1:50,000), Korea Institute of Geology and Mining and Materials, 74p. 

  39. Park, K. H., Cho, D. L., Kim, Y. B., Kim, J. C., Cho, B. W., Jang, Y. N., Lee, B. j., Lee, S. R., Son, B. K., Cheon, H. Y., Lee, H. Y., and Kim, Y. U., 2000(b), Geologic report of the segwipo-hanyori sheet (scale 1:50,000), Jeju Provincial Government, 163p. 

  40. Pineau, F., Javoy, M., and Bottinga, Y., 1976, $^{13}C/^{12}C$ ratios of rocks and inclusions in popping rocks of the Mid-Atantic Rigde and their bearing on the problem of isotopic compositions of deep seated carbon, Earth and Planetary Science Letters, 29(2), 413-421. 

  41. Piper. A. M., 1944, A Graphic procedure in the geochemical interpretation of Water-analyses, Transaction, American Geophysical Union, 25(6), 914-923. 

  42. Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R., 1993, Isotopic patterns in modern global precipitation. In: Swart, P. K., Lohman, K. C., Mckenzie, J. and Savin, S. (eds.), Climate Change in Continental Isotopic Records, Geophysical Monograph 78, American Geophysical Union, 1-36. 

  43. Szabo, Z., Rice, D. E., Plummer, L. N., Busenberg, E., Drenkard, S., and Scholosser, P., 1996, Age dating of shallow groundwater with chlorofluorocarbons, tritium/helium 3, and flow path analysis, southern New Jersey coastal plain, Water Resources Research, 32(4), 1023-1038. 

  44. U.S. Geological Survey, 2015, CFCs North American average curve, Retrieved from http://water.usgs.gov/lab/software/ air_curve/index.html. 

  45. Yurtsever, Y. and Gat, J. R., 1981, Atmospheric waters. In: Gat, J. R. and Gonfiantini, R. (eds.), Stable Isotope Hydrology: Deuterium and oxygen-18 in the water cycle, IAEA Technical Reports Series, 13(12). 103-142. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로