$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

To investigate the dynamic sorptive and hygroexpansive behaviors of wood by different cyclic hygrothermal changing effects, poplar (populus euramericana Cv.) specimens, were exposed to dynamic sorption processes where relative humidity (RH) and temperature changed simultaneously in sinusoidal waves ...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • 1. Moisture and dimensional changes of the specimens were both generally sinusoidal in different dynamic conditions. Moisture increased with increasing cyclic period and decreased with specimen thickness, and it was less under condition B than condition A.
  • 2. Both the moisture and dimensional amplitude increased with increasing cyclic period but all were lower for thicker specimens. The moisture and dimensional amplitude of condition A was larger than that of condition B for the combined effect of temperature and RH changes.
  • 3. Transverse anisotropy under different dynamic conditions was observed. T/R increased as cyclic period increased or specimen thickness decreased.
본문요약 정보가 도움이 되었나요?

참고문헌 (43)

  1. Arevalo, R., Hernandez, R.E. 2001. Influence of moisture sorption on swelling of mahogany (Swietenia macrophylla King) wood. Holzforschung 55: 590-594. 

  2. Brunauer, S., Emmett, P.H., Teller, E. 1938. Adsorption of gases in multimolecular layers. Journal of the American Chemical Society 60: 309-319. 

  3. Chang, Y., Han, Y., Eom, C., Park, J., Park, M., Choi, I., Yeo, H. 2012. Analysis of factors affecting the hygroscopic performance of thermally treated Pinus koraiensis wood. Journal of The Korean Wood Science & Technology 40(1): 10-18. 

  4. Chen, C., Wangaard, F.F. 1968. Wettability and the hysteresis effect in the sorption of water vapor by wood. Wood Science and Technology 2: 177-187. 

  5. Chomcharn, A., Skaar, C. 1983. Dynamic sorption and hygroexpansion of wood wafers exposed to sinusoidally varying humidity, Wood Science and Technology 17(4): 259-277. 

  6. Dent, R.W. 1997. A multilayer theory for gas sorption I. Sorption of a single gas. Textile Research Journal 40: 145-152. 

  7. Engelund, E.T., Thygesen, L.G., Hoffmeyer, P. 2010. Water sorption in wood and modified wood at high values of relative humidity-part 2. Theoretical assessment of the amount of capillary water in wood microvoids. Holzforschung 64: 325-330. 

  8. Engelund, E.T., Thygesen, L.G., Svensson, S., Hill, C.A.S. 2013. A critical discussion of the physics of wood-water interactions, Wood Science and Technology 47: 141-161. 

  9. Espenas, L.D. 1971. Shrinkage of Douglas fir, western hemlock, and red alder as affected by drying conditions, Forest Products Journal 21(6): 44-46. 

  10. Fan, M.Z., Dinwoodie, J.M., Bonfield, P.W., Breese, M.C. 2004. Dimensional instability of cement bonded particleboard. Part 2: Behavior and its prediction under cyclic changes in RH. Wood Science and Technology 38(1): 53-68. 

  11. Farmer, R.H. 1972. Handbook of hardwoods (2nd edition). Her Majesty Stationary Office, London, England. 

  12. Garcia, E.L, Gril, J., De, P.D.P.P., Guindeo, C.A. 2005. Reduction of wood hygroscopicity and associated dimensional response by repeated humidity cycles. Annals of Forest Science 62(3): 275-284. 

  13. Gong, R.M., Shen, J., He, L.Z., Liu, Y.L., Xu, L.Y. 2001. The effect of temperature on moisture movement and microstructure of larch wood in man-made forest, Journal of Northeast Forestry University 29(5): 31-33. 

  14. Harris, J.M. 1961. The dimensional stability, shrinkage intersection point and related properties of New Zealand timbers. Forest Research Institute, Wellington: N Z. pp. 36. 

  15. Hill, C.A.S., Jones, D. 1999. Dimensional changes in Corsican pine sapwood due to chemical modification with linear chain anhydrides. Holzforschung 53: 267-271. 

  16. Hill, C.A.S. 2008. The reduction in the fibre saturation point of wood due to chemical modification using anhydride reagents: a reappraisal. Holzforschung 62: 423-428. 

  17. Hoffmeyer, P., Engelund, E.T., Thygesen, L.G. 2011. Equilibrium moisture content (EMC) in norway spruceduring the first and second desorptions. Holzforschung 65: 875-882. 

  18. Kelsey, K.E. 1957. The sorption of water vapour by wood, Aust. J. Appl. Sci. 8: 42-54. 

  19. Kollmann, F.F.P. 1959. $\ddot{U}ber$ die Sorption von Holz und ihre exakte Bestimmung, HolzRoh-Werkst 17(5): 165-171. 

  20. Liu, Y. X., Zhao, G. J. 2004. Wood Resources in Materials Science. China Forestry Publishing House, Beijing, China. 

  21. Ma, E.N., Nakao, T., Zhao, G.J., Ohata, H., Kawamura, S. 2010. Dynamic sorption and hygroexpansion of wood subjected to cyclic relative humidity changes, Wood Fiber Science 42(2): 229-236. 

  22. Ma, E.N., Zhao, G.J. 2012. Special topics on wood physics. China Forestry Publishing House, Beijing, China. 

  23. Macromolecule Academy.1958. Physical Properties of Macromolecules. Kyoritsu Press, Tokyo, Japan. 

  24. Noack, D., Schwab, E., Bartz, A. 1973. Characteristics for a judgement of the sorption and swelling behavior of wood. Wood Science and Technology 7: 218-236. 

  25. Obataya, E., Tomita, B. 2002. Hygroscopicity of heat-treated wood II: Reversible and irreversible reductions in the hygroscopicity of wood due to heating. Journal of Wood Science 48(4): 288-295. 

  26. Olek, W., Majka, J., Czajkowski, L. 2013. Sorption isotherms of thermally modified wood. Holzforschung 67: 183-191. 

  27. Park,Y., Han, Y., Park, J., Chang Y., Yang, S., Chung, H., Kim, K., Yeo, H. 2015. Evaluation of physico-mechanical properties and durability of Larix kaempferi wood heat-treated by hot air. Journal of The Korean Wood Science & Technology 43(3): 334-343. 

  28. Schniewind, A.P. 1967. Creep-rupture life of Douglas-fir under cyclic environmental conditions, Wood Science and Technology 1(4): 278-288. 

  29. Seung, W.O., Hee, J.P. 2015. Vacuum pressure treatment of water-soluble melamine resin impregnation for improvement of dimensional stability on softwoods. Journal of The Korean Wood Science & Technology 43(3): 327-333. 

  30. Simpson, W.T. 1973. Predicting equilibrium moisture content of wood by mathematical models. Wood and Fiber 5(1): 41-49. 

  31. Skaar, C. 1988. Wood-water Relations. Springer-Verlag, Berlin, Germany. 

  32. Stamm, A.J. 1964. Wood and Cellulose Science. Ronald Press, New York, USA. 

  33. Stamm, A.J., Loughborough, W.K. 1935. Thermodynamics of the swelling of wood, Journal of Physical Chemistry 39(1): 121-132. 

  34. Stevens, W.C. 1963. The transverse shrinkage of wood, Forest Products Journal 13(9): 386-389. 

  35. Thygesen, L.G., Engelund, E.T., Hoffmeyer, P. 2010. Water sorption in wood and modified wood at high values of relative humidity-Part 1: results for untreated, acetylated, and furfurylated Norwayspruce. Holzforschung 64: 315-323. 

  36. Urquhart, A.R. 1929. The mechanism of the adsorption of water by cotton. Journal of the Textile Institute 20: 125-132. 

  37. Weichert, L. 1963. Investigations on sorption and swelling of spruce, beech and compressed beech wood at temperatures between $20^{\circ}C$ and $100^{\circ}C$ , Holz. Roh-Werkst 21(8): 290-300. 

  38. Willems, W. 2014a. The water vapor sorption mechanism and its hysteresis in wood: the water/void mixture postulate. Journal of the Wood Science and Technology 48: 499-518. 

  39. Willems, W. 2014b. The hydrostatic pressure and temperature dependence of wood moisture sorption isotherms. Journal of the Wood Science and Technology 48: 483-498. 

  40. Willems, W. 2015. A critical review of the multilayer sorption models and comparison with the sorption site occupancy (SSO) model for wood moisture sorption isotherm analysis. Holzforschung 69(1): 67-75. 

  41. Wu, Q.L., Lee, J.N. 2002. Thickness swelling of oriented strandboard under long-term cyclic humidity exposure condition. Wood Fiber Science 34(1): 125-139. 

  42. Yang, T.T., Ma, E.N. 2013. Dynamic sorption and hygroexpansion of wood by humidity cyclically changing effect, Journal of Functional Materials 23(44): 3055-3059. 

  43. Yang, T.T., Ma, E.N. 2015. Dynamic sorption and hygroexpansion of wood subjected to cyclic relative humidity changes II Effect of temperature. Bioresources 10(1): 1675-1685. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

FREE

Free Access. 출판사/학술단체 등이 허락한 무료 공개 사이트를 통해 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로