$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

고효율 염료감응형 태양전지를 위한 탄소나노튜브 기반 나노 하이브리드 상대전극
Carbon Nanotube-based Nanohybrid Materials as Counter Electrode for Highly Efficient Dye-sensitized Solar Cells 원문보기

Korean chemical engineering research = 화학공학, v.54 no.2, 2016년, pp.262 - 267  

김지수 (충남대학교 에너지과학기술대학원) ,  심은주 (충남대학교 화학공학과) ,  다오 반 두옹 (충남대학교 화학공학과) ,  최호석 (충남대학교 화학공학과)

초록
AI-Helper 아이콘AI-Helper

본 연구에서는 건식플라즈마 환원방법을 이용하여 다중벽 탄소나노튜브(MWNT) 코팅 층 위에 백금, 금, 백금/금 이종 나노입자를 쉽고 균일하게 고정화 시킬 수 있는 방법을 제시한다. 나노입자는 다중벽 탄소나노튜브 위에 안정적이고 균일하게 고정화되어 나노하이브리드 소재가 되며, 이렇게 합성된 나노하이브리드 소재는 염료감응형 태양전지상대전극에 적용된다. CV, EIS, Tafel 측정을 통해 준비된 상대전극의 전기화학적 특성을 분석한 결과, PtAu alloy/MWNT 상대전극이 가장 높은 전기화학적 촉매 활성과 전기 전도도를 보여준다. PtAu alloy/MWNT 상대전극을 이용한 염료감응형 태양전지는 7.9%의 에너지 변환 효율을 보임으로써 MWNT (2.6%), AuNP/MWNT (2.7%) 그리고 PtNP/MWNT (7.5%) 상대전극을 사용한 염료감응형 태양전지의 효율과 비교하였을 때, 가장 높은 효율을 보여주고 있다.

Abstract AI-Helper 아이콘AI-Helper

In this study, we present an excellent approach for easily and uniformly immobilizing Pt, Au and bimetallic PtAu nanoparticles (NPs) on a multi-walled carbon nanotube (MWNT)-coated layer through dry plasma reduction. The NPs are stably and uniformly immobilized on the surface of MWNTs and the nanohy...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 그러나, 백금/금 나노입자를 MWNT 표면 위에 나노합금 형태로 합성하여 사용할 경우, 백금/금 나노합금과 MWNT의 나노하이브리드 소재가 요오드화물 전해질 내에서 안정하게 촉매활성을 보이는 지에 대한 연구는 보고된 바가 없다. 따라서, 본 연구에서는 이에 대한 체계적인 연구를 수행하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
염료감응형 태양전지가 차세대 태양전지로 주목 받는 이유는? 최근 과도한 화석연료의 사용으로 인한 에너지 고갈과 환경 문제로 인해 차세대 에너지로써 신재생 에너지 분야가 크게 대두되고 있다. 특히, 1991년 스위스 로잔 공대의 Gratzel 교수에 의해 처음 보고된 염료감응형 태양전지는 낮은 가격, 환경 친화성 그리고 높은 효율의 가능성을 가지고 있어 차세대 태양전지로 큰 주목을 받고 있다[1,2]. 염료감응형 태양전지는 작동전극(working electrode), 상대전극(counter electrode), 염료(dye), 전해질(electrolyte)로 구성되며 각 구성부를 중심으로 염료감응형 태양전지의 효율향상을 위한 다양한 연구가 활발히 진행되고 있다[3-6].
백금의 장점과 단점은? 특히, 높은 전기 전도도와 iodide/triiodide 산화-환원을 위한 상대전극의 높은 촉매 활성도는 고효율 염료감응형 태양전지의 제조에 있어서 중요한 이슈이다. 현재 상대전극의 촉매 층으로는 백금(Pt)이 가장 많이 사용되고 있는데, 백금은 촉매적 특성이 우수하고, 높은 전기전도도를 가진다는 장점이 있지만 가격이 비싸고, 장시간 요오드 전해액에 접촉 할 경우, 소량의 백금이 산화되어 촉매기능의 내구성이 떨어진다는 단점이 있다[7,8]. 이러한 백금의 단점을 보완하고 경제성 있는 다른 소재로 대체하는 연구가 활발히 진행 중이다[9-11].
Pt와 Au를 혼합하여 사용한 경우 전체적인 촉매 특성이 증가한 이유는? 이러한 이유는 크게 두 가지로 설명이 가능하다. 첫 번째로, 전류밀도 피크의 면적은 전극 활성 표면적과 관계가 있다[36]. PtAu-MWNT 전극은 다른 전극들과 비교하여 전류밀도 피크의 면적이 가장 크게 측정되었는데 이는 SEM 사진에서 확인하였듯이 Pt와 Au를 혼합하여 사용하였을 때 가장 많은 입자가 형성됨으로써 상대적으로 큰 전극 활성 표면적을 가지기 때문이다. 두번째로, 위에서 설명하였듯이 Pt의 d-vacancy 증가이다. Pt의 d-vacancy 증가로 인해 Pt와 삼요오드화물 사이의 상호작용이 강화되고 이는 전극의 촉매 활동도의 증가로 연결된다.
질의응답 정보가 도움이 되었나요?

참고문헌 (37)

  1. O'Regan, B. and Gratzel, M., "A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal $TiO_2$ Films," Nature., 353, 737-740(1991). 

  2. Gratzel, M., "Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells," Inorg. Chem., 44(20), 6841-6851(2005). 

  3. Jiang, K. Manseki, K. Yu, Y. Masaki, N. Suzuki, K. Song, Y. and Yanagida, S., "Photovoltaics Based on Hybridization of Effective Dye-Sensitized Titanium Oxide and Hole-Conductive Polymer P3HT,"Adv. Funct. Mater., 19(15), 2481-2485(2009). 

  4. Chang, J. A., Rhee, J. H., Im, S. H., Lee, Y. H., Kim, H. J., Seok, S. I., Nazeeruddin. Md. K. and Gratzel, M., "High-Performance Nanostructured Inorganic-Organic Heterojunction Solar Cells," Nano Lett., 10(7), 2609-2612(2010). 

  5. Sastrawan, R. Beier, J. Belledin, U. Hemming, S. Hinsch, A. Kern, R. Vetter, C. Petrat, F. M., Prodi-Schwab Lechner, A. and Hoffmann, W., "A Glass Frit-Sealed Dye Solar Cell Module with Integrated Series Connections," Sol. Energy Mater. Sol. Cells., 90(11), 1680-1697(2006). 

  6. Ahn, S. H., Kim, H. W., Lee, S. H., Chi, W. S., Choi, J. R., Shul, Y. G. and Kim, J. H., "Effect of Oligomer on Dye-sensitized Solar Cells Employing Polymer Electrolytes," Korean J. Chem. Eng., 28(1), 138-142(2011). 

  7. Kay, A. and Gratzel, M., "Low Cost Photovoltaic Modules Based on Dye Sensitized Nanocrystalline Titanium Dioxide and Carbon Powder," Sol. Energy Mater. Sol. Cells., 44(1), 99-117(1996). 

  8. Olsen, E. Hagen, G. and Lindquist, S. E., "Dissolution of Platinum in Methoxy Propionitrile Containing LiI/ $I^2$ ," Sol. Energy Mater. Sol. Cells., 63(3), 267-273(2000). 

  9. Lee, S. U., Choi, W. S. and Hong, B., "A Comparative Study of Dye-Sensitized Solar Cells Added Carbon Nanotubes to Electrolyte and Counter Electrodes," Sol. Energy Mater. Sol. Cells., 94(4), 680-685(2010). 

  10. Nam, J. G., Park, Y. J., Kim, B. S. and Lee, J. S., "Enhancement of the Efficiency of Dye-Sensitized Solar Cell by Utilizing Carbon Nanotube Counter Electrode," Scripta Mater., 62(3), 148-150(2010). 

  11. Kim, K. M., Kang, K. Y., Choi, M. G., Lee, Y. G., "Anode Properties of Sn-Ni Nanoparticle Composites for Rechargeable Lithium Batteries," Korean Chem. Eng. Res., 49(6), 846-850(2011). 

  12. Bonard, J., Maier, F., Stockli, T., Chatelain, A., Heer, W. A., Salvetat, J. and Forro, L., "Field Emission Properties of Multiwalled Carbon Nanotubes," Ultramicroscopy., 73(1), 7-15(1998). 

  13. Trancik, J. E., Barton, S. C. and Hone, J., "Transparent and Catalytic Carbon Nanotube Films," Nano Lett., 8(4), 982-987(2008). 

  14. Lee, W. J., Lee, D. Y., Kim, I. S., Jeong, S. J. and Song, J. S., "Spray-Coated Carbon Nanotube Counter Electrodes for Dye- Sensitized Solar Cells," Trans. Electr Electron. Mater., 6(4), 140-143(2005). 

  15. Cha, S. I., Koo, B. K., Seo, S. H. and Lee, D. Y., "Pt-Free Transparent Counter Electrodes for Dye-Sensitized Solar Cells Prepared from Carbon Nanotube Micro-balls," J. Mater. Chem., 20(4), 659- 662(2010). 

  16. Dao, V. D., Tran, C. Q., Ko, S. H. and Choi, H. S., "Dry Plasma Reduction to Synthesize Supported Platinum Nanoparticles for Flexible Dye-Sensitized Solar Cells," J. Mater. Chem. A., 1(14), 4436-4443(2013). 

  17. Dao, V. D., Nang, L. V., Kim, E. T., Lee, J. K. and Choi, H. S., "Pt Nanoparticles Immobilized on CVD-Grown Graphene as a Transparent Counter Electrode Material for Dye-Sensitized Solar Cells," ChemSusChem., 6(8), 1316-1319(2013). 

  18. Dao, V. D. and Choi, H. S., "Dry Plasma Synthesis of a MWNTPt Nanohybrid as an Efficient and Low-Cost Counter Electrode Material for Dye-Sensitized Solar Cell," Chem Comm., 49(79), 8910-8912(2013). 

  19. Dao, V. D., Choi, Y., Yong, K., Larina, L.L., Shevaleevskiy, O. and Choi, H. S., "A Facile Synthesis of Bimetallic AuPt Nanoparticles as a New Transparent Counter Electrode for Quantum-Dot- Sensitized Solar Cells," J. Power Sources., 274(15), 831-838(2014). 

  20. Dao, V. D., Larina, L. L., Suh, H., Hong, K., Lee, J. K. and Choi, H. S., "Optimum Strategy for Designing a Graphene-Based Counter Electrode for Dye-Sensitized Solar Cells," Carbon., 77, 980-992(2014). 

  21. Baba, K. Kaneko, T., Hatakeyama, R., Motomiyac, K. and Tohji, K., "Synthesis of Monodispersed Nanoparticles Functionalized Carbon Nanotubes in Plasma-Ionic Liquid Interfacial Fields," Chem Comm., 46(2), 255-257(2010). 

  22. Lordi, V., Yao, N. and Wei, J., "Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst," Chem. Mater., 13(3), 733-737(2001). 

  23. Dao, V. D., Ko, S. H., Choi, H. S. and Lee, J. K., "Pt-NP-MWNT Nanohybrid as a Robust and Low-Cost Counter Electrode Material for Dye-Sensitized Solar Cells," J. Mater. Chem., 22(28), 14023-14029(2012). 

  24. Fenennll, J., He, D., Tanyi, A. M., Logsdail, A. J., Johnston, R. L., Li, Z. Y. and Horswell, S. L., "A Selective Blocking Method To Control the Overgrowth of Pt on Au Nanorods," J. Am. Chem. Soc., 135(17), 6554-6561(2013). 

  25. Chen, C. W., Serizawa, T. and Akashi, M., "In Situ Formation of Au/ Pt Bimetallic Colloids on Polystyrene Microspheres: Control of Particle Growth and Morphology," Chem. Mater., 14(5), 2232-2239(2002). 

  26. Shen, J., Hill, J. M., Ramachandra, M. W., Podkolzin, S. G. and Dumesic, J. A., "Ethylene Adsorption on Pt/Au/ $SiO_2$ Catalysts," Catal. Lett., 60(1), 1-9(1999). 

  27. Wolf, A. and Schuth, F., "A Systematic Study of the Synthesis Conditions for the Preparation of Highly Active Gold Catalysts," Appl. Catal. A., 226(1), 1-13(2002). 

  28. Yang, C. M., Kalwei, M., Schuth, F. and Chao, K. J., "Gold Nanoparticles in SBA-15 Showing Catalytic Activity in CO Oxidation," Appl. Catal. A., 254(2), 289-296(2003). 

  29. Boujday, S., Lehman, J., Lambert, J. F. and Che, M., "Evolution of Transition Metal Speciation in the Preparation of Supported Catalysts: Halogenoplatinate (IV) on Silica," Catal. Lett., 88(1), 23-30(2003). 

  30. Shelimov, B., Lambert, J. F., Che, M. and Didillon, B., "Application of NMR to Interfacial Coordination Chemistry: A $^{195}Pt$ NMR Study of the Interaction of Hexachloroplatinic Acid Aqueous Solutions with Alumina," J. Am. Chem. Soc., 121(3), 545-556(1999). 

  31. Ranasinghe, A. D. (Ph.D. thesis), University of California, Santa Barbara, CA, (2007). 

  32. Brillson, L. J., "Surface and Interface of Electronic Materials", WILEY-VCH Verlag 413 GmbH & Co. KGaA, Weinheim (2010). 

  33. Xu, C., Hou, J., Pang, X., Li, X., Zhu, M. and Tang, B., "Nanoporous PtCo and PtNi Alloy Ribbons for Methanol Electrooxidation," Int. J. Hydrogen Energy., 37(14), 10489-10498(2012). 

  34. Toda, T., Igarashi, H. and Watanabe, M., "Enhancement of the Electrocatalytic $O_2$ Reduction on Pt-Fe Alloys," J. Electroanalytical Chemistry., 460(1), 258-262(1999). 

  35. Yoon, C. H., Vittal, R., Lee, J., Chae, W. S. and Kim, K. J., "Enhanced Performance of a Dye-Sensitized Solar Cell with an Electrodeposited- Platinum Counter Electrode," Electrochim. Acta., 53(6), 2890-2896(2008). 

  36. Dao, V. D. and Choi, H. S., "An Optimum Morphology of Platinum Nanoparticles with Excellent Electrocatalytic Activity for a Highly Efficient Dye-Sensitized Solar Cell," Electrochimica Acta., 93, 287-292(2013). 

  37. Imoto, K., Takahashi, K., Yamaguchi, T., Komura, T., Nakamura, J. I. and Murata, K., "High-Performance Carbon Counter Electrode for Dye-Sensitized Solar Cells," Sol. Energy Mater. Sol. Cells., 79(4), 459-469(2003). 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로