$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Abstract AI-Helper 아이콘AI-Helper

For a long time, a top priority in the nuclear industry was the safe, reliable, and economic operation of light water reactors. However, the development of accident-tolerant fuel (ATF) became a hot topic in the nuclear research field after the March 2011 events at Fukushima, Japan. In Korea, innovat...

주제어

참고문헌 (51)

  1. Y.H. Koo, J.H. Yang, J.Y. Park, K.S. Kim, H.G. Kim, D.J. Kim, Y.I. Jung, K.W. Song, KAERI's development of LWR accidenttolerant fuel, Nucl. Technol. 186 (2014) 295-304. 

  2. J. Carmack, F. Goldner, S.M. Bragg-Sitton, L.L. Snead, Overview of the U.S. DOE accident tolerant fuel development program, TopFuel 2013, Charlotte, North Carolina, Sep. 15-19, 2013. 

  3. B. Chang, Y.J. Kim, P. Chou, J. Deshon, Development of Moalloy for LWR fuel cladding to enhance fuel tolerance to severe accidents, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013. 

  4. I. Idarraga-Trujillo, M. Le Flem, J-C. Brachet, M. Le Saux, D. Hamon, S. Muller, V. Vandenberghe, M. Tupin, E. Papin, E. Monsifrot, A. Billard, F. Schuster, Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013. 

  5. H.G. Kim, I.H. Kim, J.Y. Park, Y.H. Koo, Application of Coating Technology on Zr-based Alloy to Decrease High-temperature Oxidation, Zirconium in the Nuclear Industry STP 1543, 2013, http://dx.doi.org/10.1520/STP154320120161. 

  6. B.A. Pint, K.A. Terrani, M.P. Brady, T. Cheng, J.R. Keiser, High temperature oxidation of fuel cladding candidate materials in steam-hydrogen environments, J. Nucl. Mater. 440 (2013) 420-427. 

  7. K.A. Terrani, S.J. Zinkel, L.L. Snead, Advanced oxidationresistance iron-based alloys for LWR fuel cladding, J. Nucl. Mater. 448 (2013) 420-435. 

  8. J.D. Stempien, D.M. Carpenter, G. Kohse, M.S. Kazimi, Characteristics of composite silicon carbide fuel cladding after irradiation under simulated PWR conditions, Nucl. Technol. 183 (2013) 13-29. 

  9. R. Montgomery, E. Mader, N. Domenico, R. Fawcett, J. Guerci, E. Lahoda, B. Minnick, P. Murray, S. Nesbit, M. Meyer, S.M. Bragg-Sitton, Industry-valued design objectives for advanced LWR fuels and concept screening results, TopFuel 2013, Charlotte, NC, Sep. 15-19, 2013. 

  10. S.J. Zinkle, K.A. Terrani, J.C. Gehin, L.J. Ott, L.L. Snead, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater. 448 (2014) 374-379. 

  11. J. Bischoff, P. Blanpain, J. Strumpell, Development of Fuels with Enhanced Accident Tolerance, IAEA Technical Meeting on Accident Tolerant Fuel Concepts for LWRs, Oak Ridge National Lab, USA, Oct. 13-14, 2015. 

  12. A.M. Savchenko, V.B. Ivanov, V.V. Novikov, M.V. Skupov, G.V. Kulakov, V.K. Orlov, O.I. Uferov, Y.V. Konovalov, Review of A.A. BOCHVAR Institute activities in developing potentially accident tolerant fuel for LWRs, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015. 

  13. S. Ray, P. Xu, E. Lahoda, L. Hallstadius, F. Boylan, S. Johnson, Westinghouse accident tolerant fuel program-current results & future plans, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015. 

  14. T. Liu, Update of accident tolerant fuel R&D status in China, 4th Meeting of the Expert Group on Accident Tolerant Fuels for Light Water Reactors, PSI, Villingen(Switzerland) Sep. 17-18. 2015. 

  15. W.-J. Kim, D. Kim, J.Y. Park, Fabrication and material issues for the application of SiC composites to LWR fuel cladding, Nucl. Eng. Technol. 45 (2013) 565-572. 

  16. S. Ray, S.C. Johnson, E.J. Lahoda, Preliminary assessment of the performance of SiC based accident tolerant fuel in commercial LWR systems, TopFuel 2013, American Nuclear Society, Charlotte, USA, Sep. 15-19, 2013. 

  17. J.H. Yang, K.S. Kim, D.J. Kim, J.H. Kim, J.S. Oh, Y.W. Rhee, Y.H. Koo, Micro-cell UO2 pellets for enhanced accident tolerant fuel, TopFuel 2013, American Nuclear Society, Charlotte, USA, Sep. 15-19, 2013. 

  18. D.J. Kim, Y.W. Rhee, J.H. Kim, K.S. Kim, J.S. Oh, J.H. Yang, Y.H. Koo, K.W. Song, Fabrication of micro-cell $UO_2$ -Mo pellet with enhanced thermal conductivity, J. Nucl. Mater. 462 (2015) 289-295. 

  19. J.H. Yang, D.J. Kim, K.S. Kim, Y.H. Koo, $UO_2$ -UN composites with enhanced uranium density and thermal conductivity, J. Nucl. Mater. 465 (2015) 509-515. 

  20. L.J. Ott, K.R. Robb, D. Wang, Preliminary assessment of accident-tolerant fuels on LWR performance during normal operation and under DB and BDB accident conditions, J. Nucl. Mater. 448 (2014) 520-533. 

  21. K.A. Terrani, D. Wang, L.J. Ott, R.O. Montgomery, The effect of fuel thermal conductivity on the behavior of LWR cores during loss-of-coolant accidents,, J. Nucl. Mater. 448 (2014) 512-519. 

  22. G. Brillant, F. Gupta, A. Pasturel, Fission products stability in uranium dioxide, J. Nucl. Mater. 412 (2011) 170-176. 

  23. D. Jadernas, F. Corleoni, A. Puranen, P. Tejland, M. Granfors, PCI mitigation using fuel additives, TopFuel 2015, American Nuclear Society, Zurich(Switzerland) Sep. 13-17, 2015. 

  24. H.S. Lee, D.J. Kim, S.W. Kim, J.H. Yang, Y.H. Koo, D.R. Kim, Thermal conductivity of metallic micro-cell fuel pellet with different unit cell geometry, Spring Meeting 2015, Korean Nuclear Society, Jeju(Korea) May 7-8, 2015. 

  25. J.H. Yang, D.J. Kim, K.S. Kim, Y.H. Koo, Thermo-physical property of micro-cell UO2 pellets and high density composite pellets for accident tolerant fuel, IAEA Technical Meeting on Accident Tolerant Fuel Concepts for LWRs, Oak Ridge National Lab., USA, Oct. 13-14, 2015. 

  26. D.J. Kim, J.H. Yang, J.H. Kim, K.S. Kim, Y.W. Rhee, J.S. Oh, Y.H. Koo, Metal network containing micro-cell UO2 pellets for accident tolerant fuel, 11th Pacific Rim Conference of Ceramic Societies, Jeju(Korea) Aug. 30-Sept. 4, 2015. 

  27. B.J. Lewis, W.T. Thompson, F. Akbari, D. Thompson, C. Thurgood, J. Higgs, Thermodynamic and kinetic modelling of fuel oxidation behaviour in operating defective fuel, J. Nucl. Mater. 328 (2004) 180-196. 

  28. J. Spino, P. Peerani, Oxygen stoichiometry shift of irradiated LWR-fuels at high burn-ups: review of data and alternative interpretation of recently published results, J. Nucl. Mater. 375 (2008) 8-25. 

  29. D.H. Hwang, S.G. Hong, W.K. In, Evaluation of physical characteristics of PWR cores with accident tolerant fuels, Autumn Meeting 2015, Korean Nuclear Society, Gyeongju(Korea), Oct. 29-30, 2015. 

  30. G.J. Youinou, R.S. Sen, Impact of accident-tolerant fuels and claddings on the overall fuel cycle: a preliminary systems analysis, Nucl. Technol. 188 (2014) 123-128. 

  31. M. Uno, T. Nishi, M. Takano, Thermodynamic and thermophysical properties of the actinide nitrides, in: Comprehensive Nuclear Materials, Elsevier, 2012, pp. 61-85. 

  32. J.M. Harp, P.A. Lessing, R.E. Hoggan, Uranium silicide pellet fabrication by powder metallurgy for accident tolerant fuel evaluation and irradiation, J. Nucl. Mater. 466 (2015) 728-738. 

  33. B.J. Jaques, J. Watkins, J.R. Croteau, G.A. Alanko, B. Tyburska-Puschel, M. Meyer, P. Xu, E.J. Lahoda, D.P. Butt, Synthesis and sintering of UN- $UO_2$ fuel composites, J. Nucl. Mate.r 466 (2015) 745-754. 

  34. P.A. Lessing, INL/EXT-12-24974, Oxidation Protection of Uranium Nitride Fuel Using Liquid Phase Sintering, Idaho National Laboratory, 2012. 

  35. G.A. Rama Rao, S.K. Mukerjee, V.N. Vaidya, V. Venugopal, D.D. Sood, Oxidation and hydrolysis kinetic studies on UN, J. Nucl. Mater. 185 (1991) 231-241. 

  36. K.H. Kim, D.B. Lee, C.K. Kim, G.E. Hofman, K.W. Paik, Characterization U-2wt% Mo and U-10 wt% Mo alloy powders prepared by centrifugal atomization, J. Nucl. Mater. 245 (1997) 179-184. 

  37. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, Microstructure and mechanical strength of surface ODS treated Zircaloy-4 sheet using laser beam scanning, Nucl. Eng. Technol. 46 (4) (2014) 521-528. 

  38. H.G. Kim, I.H. Kim, Y.I. Jung, D.J. Park, J.Y. Park, Y.H. Koo, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater. 465 (2015) 531-539. 

  39. L.L. Snead, T. Nozawa, Y. Katoh, T.S. Byun, S. Kondo, D.A. Petti, Handbook on SiC properties for fuel performance modeling, J. Nucl. Mater. 371 (2007) 329-377. 

  40. K. Yueh, D. Carpenter, H. Feinroth, Clad in clay, Nucl. Eng. Int. 55 (2010) 14-16. 

  41. K.A. Terrani, B.A. Pint, C.M. Parish, C.M. Silva, L.L. Snead, Y. Katoh, Silicon carbide oxidation in steam up to 2 MPa, J. Am. Ceram. Soc. 97 (2014) 2331-2352. 

  42. D. Carpenter, An Assessment of Silicon Carbides as a Cladding Material for Light Water Reactors, Ph.D. thesis, Massachusetts Institute of Technology, 2010. 

  43. Y. Katoh, L.L. Snead, I. Szlufarska, W.J. Weber, Radiation effects in SiC for nuclear structural applications, Curr. Opin. Solid State Mater. Sci. 16 (2012) 143-152. 

  44. D. Kim, H.-G. Lee, J.Y. Park,W.-J. Kim, Fabrication and measurement of hoop strength of SiC triplex tube for nuclear fuel cladding applications, J. Nucl. Mater. 458 (2015) 29-36. 

  45. D. Kim, J. Lee, J.Y. Park, W.-J. Kim, Effect of filament winding methods on surface roughness and fiber volume fraction of SiCf/SiC composite tubes, J. Korean Ceram. Soc. 50 (2013) 359-363. 

  46. D.G.S. Davies, The statistical approach to engineering design in ceramics,, Proc. Br. Ceram. Soc. 22 (1973) 429-452. 

  47. W.-J. Kim, H.S. Hwang, J.Y. Park, W.-S. Ryu, Corrosion behaviors of sintered and chemically vapor deposited silicon carbide ceramics in water at $360^{\circ}C$ , J. Mater. Sci. Lett. 22 (2003) 581-584. 

  48. L. Tan, T.R. Allen, E. Barringer, Effect of microstructure on the corrosion of CVD-SiC exposed to supercritical water, J. Nucl. Mater. 394 (2009) 95-101. 

  49. J.-Y. Park, I.-H. Kim, Y.-I. Jung, H.-G. Kim, D.-J. Park, W.-J. Kim, Long-term corrosion behavior of CVD SiC in $360^{\circ}C$ water and $400^{\circ}C$ steam, J. Nucl. Mater. 433 (2013) 603-607. 

  50. C.H. Henager Jr., A.L. Schemer-Kohrn, S.G. Pitman, D.J. Senor, K.J. Geelhood, C.L. Painter, Pitting corrosion in CVD SiC at $300^{\circ}C$ in deoxygenated high-purity water, J. Nucl. Mater. 378 (2008) 9-16. 

  51. D. Kim, H.-G. Lee, J.Y. Park, J.-Y. Park, W.-J. Kim, Effect of dissolved hydrogen on the corrosion behavior of chemically vapor deposited SiC in a simulated pressurized water reactor environment, Corros. Sci. 98 (2015) 304-309. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로