$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Effect of Bottom Electrode on Resistive Switching Voltages in Ag-Based Electrochemical Metallization Memory Device 원문보기

Journal of semiconductor technology and science, v.16 no.2, 2016년, pp.147 - 152  

Kim, Sungjun (Department of Electrical and Computer Engineering and the Interuniversity Semiconductor Research Center (ISRC), Seoul National University) ,  Cho, Seongjae (Department of Electronic Engineering, Gachon University) ,  Park, Byung-Gook (Department of Electrical and Computer Engineering and the Interuniversity Semiconductor Research Center (ISRC), Seoul National University)

Abstract AI-Helper 아이콘AI-Helper

In this study, we fabricated Ag-based electrochemical metallization memory devices which is also called conductive-bridge random-access memory (CBRAM) in order to investigate the resistive switching behavior depending on the bottom electrode (BE). RRAM cells of two different layer configurations hav...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

가설 설정

  • 6. Energy-band diagrams (a) MIM, (b) MIS structures under flat-band conditions, (c) MIM, (d) MIS structures under equilibrium.
본문요약 정보가 도움이 되었나요?

참고문헌 (23)

  1. R. Waser and M. Aono, "Nanoionics-based resistive switching memories," Nat. Mater., vol. 6, no. 11, pp. 833-840, Nov. 2011. 

  2. H. Zhang, L. Liu, B. Gao, Y. Qiu, X. Liu, J. Lu, R. Han, J. Kang, and B. Yu, "Gd-doping effect on performance of $HfO_2$ based resistive switching memory devices using implantation approach," Appl. Phys. Lett., vol. 98, no. 4, pp. 042105-1-042105-3, Jan. 2011. 

  3. H.-D. Kim, M. J. Yun, and S. Kim, "All ITO-Based Trasparent Resistive Switching Random Access Memory Using Oxygen Doping Method," J. Alloy. Compd., vol. 653, pp. 534-538, Dec. 2015. 

  4. H.-D. Kim, M. J. Yun, and T. G. Kim, "Formingfree bipolar resistive switching in nonstoichiometric ceria films," Phys. Status Solidi. R., vol. 9, no. 4, pp. 264-268, Mar. 2015. 

  5. S. Kim, S. Jung, and B.-G. Park, "Investigation of bipolar resistive switching characteristics in $Si_3N_4$ -based RRAM with metal-insulator-silicon structure," Int. J. Nanotechnol., vol. 11, no. 1-4, pp. 126-134, Mar. 2014. 

  6. S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Resistive switching characteristics of $Si_3N_4$ -based resistive-switching random-access memory cell with tunnel barrier for high density integration and low-power applications," Appl. Phys. Lett., vol. 106, no. 21, pp. 212106-1-212106-4, May. 2015. 

  7. S. Kim, S. Cho, K.-C. Ryoo, and B.-G. Park, "Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods," J. Vac. Sci. Technol. B, vol. 33, no. 6, pp. 062201-1-052204-6, Nov. 2015. 

  8. K. Kim, K. Lee, K.-H. Lee, Y.-K. Park, and W. Y. Choi, "A Finite Element Model for Bipolar Resistive Random Access Memory," J. Semicod. Tech. Sci., vol. 14, no. 3, pp. 268-271, Jun. 2014. 

  9. S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Resistive switching characteristics of silicon nitride-based RRAM depending on top electrode metals," IEICE Trans. Electron., vol. E98-C, No. 5, pp. 429-432, May. 2015. 

  10. S. Kim, S. Jung, M.-H. Kim, S. Cho, and B.-G. Park, "Gradual bipolar resistive switching in Ni/ $Si_3N_4/n^+-Si$ resistive-switching memory device for high-density integration and low-power applications," Solid-State Electron., vol. 114, pp. 94-97, Dec. 2015. 

  11. H.-D. Kim, M. Yun, and S. Kim, "Self-rectifying resistive switching behavior observed in $Si_3N_4$ -based resistive random access memory devices," J. Alloy. Compd., vol. 651, pp. 340-343, Dec. 2015. 

  12. D. Walczyk, Ch. Walczyka, T. Schroedera, T. Bertauda, M. Sowi?skaa, M. Lukosiusa, M. Fraschkea, B. Tillacka, and Ch. Wengera, "Resistive switching characteristics of CMOS embedded $HfO_2$ -based 1T1R cells," Microelectron Eng., vol. 88, no. 7, pp. 1133-1135, Jul. 2011. 

  13. H.-D. Kim, F. Crupi, M. Lukosius, A. Trusch, C. Walczyk, and C. Wenger, "Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods," J. Vac. Sci. Technol. B, vol. 33, no. 5, pp. 052204-1-052204-5, Aug. 2015. 

  14. Y. Kim, J. Y. Seo, S.-H Lee, and B.-G. Park, "A new programming method to alleviate the program speed variation in three-dimensional stacked array NAND flash memory," J. Semicod. Tech. Sci., vol. 14, no. 5, pp. 566-571, Oct. 2014. 

  15. W. Kwon, I. J. Park, and C. Shin, "Highly Scalable NAND Flash Memory Cell Design Embracing Backside Charge Storage," J. Semicond. Technol. Sci., vol. 15, no. 2, pp. 286-291, Apr. 2015. 

  16. R. Dong, D. S. Lee, W. F. Xiang, S. J. Oh, D. J. Seong, S. H. Heo, H. J. Choi, M. J. Kwon, S. N. Seo, M. B. Pyun, M. Hasan and H. Hwang, "Reproducible hysteresis and resistive switching in metal- $Cu_xO$ -metal heterostructures," Appl. Phys. Lett., vol. 90, no. 4, pp. 042107-1-042107-3, Jan. 2007. 

  17. Q. Liu. W. Guan, S. Long, R Jia, and M. Liu, "Resistive switching memory effect of $ZrO_2$ films with $Zr^+$ implanted," Appl. Phys. Lett., vol. 92, no. 1, pp. 012117-1-012117-3, May. 2008. 

  18. S. Yu and, H.-S. P. Wong "Compact Modeling of Conducting-Bridge Random-Access Memory (CBRAM)," IEEE Trans. Electron. Dev., vol. 58, no. 5, pp.1352-1360, May. 2011. 

  19. S.-J. Choi, J.-H. Lee, H.-J. Bae, W.-Y. Yang, T.-W. Kim, and K.-H. Kim, "Improvement of CBRAM Resistance Window by Scaling Down Electrode Size in Pure-GeTe Film," IEEE Electron. Dev. Lett., vol. 30, no. 2, pp. 120-122, Feb. 2009. 

  20. A. Pradel, N. Frolet, M. Ramonda, A. Piarristeguy, and M. Ribes "Bipolar resistance switching in chalcogenide materials," Phys. Status Solidi. R., vol. 208, no. 10, pp. 2303-2308, Oct. 2011. 

  21. Y. C. Yang, F. Pan, F. Zeng, and M. Liu, "Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization," J. Appl. Phys., vol. 106, no. 12, pp. 123705-1-123705-7, Dec. 2009. 

  22. J.-K. Lee, S. Jung, J. Park, S.-W. Chung, J. S. Roh, S.-J. Hong, I. H. Cho, H.-I. Kwon, C. H. Park, B.-G. Park, and J.-H. Lee, "Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices," Appl. Phys. Lett., vol. 101, no. 10, pp. 103506-1-103506-3, Sep. 2012. 

  23. J. Molina, R. Valderrama, C. Zuniga, P. Rosales, W. Calleja, A. Torres, J. D. Hidalga, and E. Gutierrez, "Influence of the surface roughness of the bottom electrode on the resistive-switching characteristics of $Al/Al_2O_3/Al$ and $Al/Al_2O_3/W$ structures fabricated on glass at $300^{\circ}C$ ," Microelectron. Reliab., vol. 54, no. 12, pp. 2747-2753, Dec. 2014. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로