$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Molecular Characterization of Plasmids Encoding CTX-M β-Lactamases and their Associated Addiction Systems Circulating Among Escherichia coli from Retail Chickens, Chicken Farms, and Slaughterhouses in Korea 원문보기

Journal of microbiology and biotechnology, v.26 no.2, 2016년, pp.270 - 276  

Jo, Su-Jin (Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University) ,  Woo, Gun-Jo (Laboratory of Food Safety and Evaluation, Department of Biotechnology, Korea University)

Abstract AI-Helper 아이콘AI-Helper

Extended-spectrum β-lactamases (ESBLs), particularly those of the CTX-M types, are the predominant resistance determinants of Escherichia coli that are rapidly spreading worldwide. To determine CTX-M types, E. coli isolates were collected from retail chickens (n = 390) and environmental samples from...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • [36]. To confirm the presence of blaCTX-M β-lactamases, the sequences of the CTX-M-1, 8, 9, and 10 families were used for specific grouping. CTX-M-type families were detected by the PCR method.

이론/모형

  • The antimicrobial susceptibility was determined by using the disc diffusion method, in accordance with Clinical and Laboratory Standards Institute (CLSI) guidelines [6]. The antimicrobial agents (BBL) and their corresponding concentrations were as follows: ampicillin (AM, 10 μg), piperacillin (PIP, 100 μg), amoxicillin-clavulanic acid (AmC, 20/10 μg), cephalothin (CF, 30 μg), cefazolin (CZ, 30 μg), cefoxitin (FOX, 30 μg), cefamandole (MA, 30 μg), cefotaxime (CTX, 30 μg), ceftazidime (CAZ, 30 μg), cefepime (FEP, 30 μg), imipenem (IPM, 10 μg), amikacin (AN, 30 μg), aztreonam (ATM, 30 μg), streptomycin (S, 25 μg), gentamicin (GM, 10 μg), ciprofloxacin (CIP, 30 μg), nalidixic acid (NA, 30 μg), trimethoprim-sulfamethoxazole (SXT, 1.
  • For comparison, a cluster analysis was performed using the Pearson correlation similarity index. The relationship was calculated by the unweighted-pair group method using average linkages.
  • (Seoul, Korea). The sequences were confirmed to those in the GenBank nucleotide database using the Basic Local Alignment Search Tool (BLAST) program available through the National Center for Biotechnology Information website (http://www.ncbi.nlm.nih.gov/BLAST).
본문요약 정보가 도움이 되었나요?

참고문헌 (36)

  1. Accogli M, Fortini D, Giufré M, Dolejska M, Carattoli A, Cerquetti M. 2012. IncI1 plasmids associated with the spread of CMY-2, CTX-M-1 and SHV-12 in Escherichia coli of animal and human origin. Clin. Microbiol. Infect. 19: E238-E240. 

  2. Börjesson S, Jernberg C, Brolund A, Edquist P, Finn M, Landén A, England S. 2013. Characterization of plasmidmediated AmpC-producing E. coli from Swedish broilers and association with human clinical isolates. Clin. Microbiol. Infect. 19: E309-E311. 

  3. Canton R, Akova M, Carmeli Y, Giske C, Glupczynski Y, Gniadkowski M, Rossolini G. 2012. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin. Microbiol. Infect. 18: 413-431. 

  4. Cantón R, Coque TM. 2006. The CTX-M β-lactamase pandemic. Curr. Opin. Microbiol. 9: 466-475. 

  5. Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ. 2005. Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63: 219-228. 

  6. Clinical and Laboratory Standards Institute. 2012. Performance standards for antimicrobial susceptibility testing: twenty second informational supplement. Clinical and Laboratory Standards Institute (CLSI), Wayne, PA. 

  7. DeVincent SJ, Reid-Smith R. 2006. Stakeholder position paper: companion animal veterinarian. Prev. Vet. Med. 73: 181-189. 

  8. Doumith M, Dhanji H, Ellington MJ, Hawkey P, Woodford N. 2012. Characterization of plasmids encoding extended-spectrum β-lactamases and their addiction systems circulating among Escherichia coli clinical isolates in the UK. J. Antimicrob. Chemother. 67: 878-885. 

  9. Gautom RK. 1997. Rapid pulsed-field gel electrophoresis protocol for typing of Escherichia coli O157:H7 and other gram-negative organisms in 1 day. J. Clin. Microbiol. 35: 2977-2980. 

  10. Girlich D, Poirel L, Carattoli A, Kempf I, Lartigue M, Bertini A, Nordmann P. 2007. Extended-spectrum β-lactamase CTX-M-1 in Escherichia coli isolates from healthy poultry in France. Appl. Environ. Microbiol. 73: 4681-4685. 

  11. Hayes F. 2003. Toxins-antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301: 1496-1499. 

  12. Kim J, Lim Y, Jeong Y, Seol S. 2005. Occurrence of CTX-M-3, CTX-M-15, CTX-M-14, and CTX-M-9 extended-spectrum β-lactamases in Enterobacteriaceae clinical isolates in Korea. Antimicrob. Agents Chemother. 9: 1572-1575. 

  13. Kim J, Bae IK, Jeong SH, Chang CL, Lee CH, Lee K. 2011. Characterization of IncF plasmids carrying the bla CTX-M-14 gene in clinical isolates of Escherichia coli from Korea. J. Antimicrob. Chemother. 66: 1263-1268. 

  14. Kluytmans JA, Overdevest IT, Willemsen I, Kluytmans-van den Bergh MF, van der Zwaluw K, Heck M, Johnson JR. 2013. Extended-spectrum beta-lactamase-producing Escherichia coli from retail chicken meat and humans: comparison of strains, plasmids, resistance genes, and virulence factors. Clin. Infect. Dis. 56: 478-487. 

  15. Lau SH, Kaufmann ME, Livermore DM, Woodford N, Willshaw GA, Cheasty T, Bolton FJ. 2008. UK epidemic Escherichia coli strains A–E, with CTX-M-15 β-lactamase, all belong to the international O25:H4-ST131 clone. J. Antimicrob. Chemother. 62: 1241-1244. 

  16. Lim S, Lee H, Nam H, Jung S, Bae Y. 2009. CTX-M-type β-lactamase in Escherichia coli isolated from sick animals in Korea. Microb. Drug Resist. 15: 139-142. 

  17. Livermore DM, Canton R, Gniadkowski M, Nordmann P, Rossolini GM, Arlet G, Luzzaro F. 2007. CTX-M: changing the face of ESBLs in Europe. J. Antimicrob. Chemother. 59: 165-174. 

  18. Madec J, Lazizzera C, Châtre P, Meunier D, Martin S, Lepage G, Rambaud T. 2008. Prevalence of fecal carriage of acquired expended-spectrum cephalosporin resistance in Enterobacteriaceae strains from cattle in France. J. Clin. Microbiol. 46: 1566-1567. 

  19. Marcade G, Deschamps C, Boyd A, Gautier V, Picard B, Branger C, et al. 2009. Replicon typing of plasmids in Escherichia coli producing extended-spectrum beta-lactamases. J. Antimicrob. Chemother. 63: 67-71. 

  20. Mnif B, Harhour H, Jdidi J, Mahjoubi F, Genel N, Arlet G, Hammami A. 2013. Molecular epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli in Tunisia and characterization of their virulence factors and plasmid addiction systems. BMC Microbiol. 13: 147. 

  21. Mnif B, Vimont S, Boyd A, Bourit E, Picard B, Branger C, Arlet G. 2010. Molecular characterization of addiction systems of plasmids encoding extended-spectrum β-lactamases in Escherichia coli. J. Antimicrob. Chemother. 65: 1599-1603. 

  22. Nasser NE, Abbas AT, Hamed SL. 2012. Bacterial contamination in intensive care unit at al-Imam al-Hussein hospital in Thi-qar province in Iraq. Glob. J. Health Sci. 5: 143. 

  23. Ohnishi M, Okatani AT, Harada K, Sawada T, Marumo K, Murakami M, Takahashi T. 2013. Genetic characteristics of CTX-M-type extended-spectrum-beta-lactamase (ESBL)-producing Enterobacteriaceae involved in mastitis cases on Japanese dairy farms, 2007 to 2011. J. Clin. Microbiol. 51: 3117-3122. 

  24. Périchon B, Bogaerts P, Lambert T, Frangeul L, Courvalin P, Galimand M. 2008. Sequence of conjugative plasmid pIP1206 mediating resistance to aminoglycosides by 16S rRNA methylation and to hydrophilic fluoroquinolones by efflux. Antimicrob. Agents Chemother. 52: 2581-2592. 

  25. Pitout JD, Laupland KB. 2008. Extended-spectrum β-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis. 8: 159-166. 

  26. Randall L, Clouting C, Horton R, Coldham N, Wu G, Clifton-Hadley F, Teale C. 2011. Prevalence of Escherichia coli carrying extended-spectrum β-lactamases (CTX-M and TEM-52) from broiler chickens and turkeys in Great Britain between 2006 and 2009. J. Antimicrob. Chemother. 66: 86-95. 

  27. Rogers BA, Sidjabat HE, Paterson DL. 2011. Escherichia coli O25b-ST131: a pandemic, multiresistant, community-associated strain. J. Antimicrob. Chemother. 66: 1-14 

  28. Shin J, Kim DH, Ko KS. 2011. Comparison of CTX-M-14-and CTX-M-15-producing Escherichia coli and Klebsiella pneumoniae isolates from patients with bacteremia. J. Infect. 63: 39-47. 

  29. Sun Y, Zeng Z, Chen S, Ma J, He L, Liu Y, Liu J. 2010. High prevalence of bla CTX-M extended-spectrum β-lactamase genes in Escherichia coli isolates from pets and emergence of CTX-M-64 in China. Clin. Microbiol. Infect. 16: 1475-1481. 

  30. Tamang MD, Nam H, Gurung M, Jang G, Kim S, Jung S, Lim S. 2013. Molecular characterization of CTX-M β-lactamase and associated addiction systems in Escherichia coli circulating among cattle, farm workers, and the farm environment. Appl. Environ. Microbiol. 79: 3898-3905. 

  31. Tamang MD, Nam H, Jang G, Kim S, Chae MH, Jung S, Lim S. 2012. Molecular characterization of extended-spectrum-β-lactamase-producing and plasmid-mediated AmpC β-lactamaseproducing Escherichia coli isolated from stray dogs in South Korea. Antimicrob. Agents Chemother. 56: 2705-2712. 

  32. Tamang MD, Nam H, Kim S, Chae MH, Jang G, Jung S, Lim S. 2013. Prevalence and molecular characterization of CTX-M β-lactamase–producing Escherichia coli isolated from healthy swine and cattle. Foodborne Pathog. Dis. 10: 13-20. 

  33. Tamang MD, Nam H, Kim T, Jang G, Jung S, Lim S. 2011. Emergence of extended-spectrum β-lactamase (CTX-M-15 and CTX-M-14)-producing nontyphoid Salmonella with reduced susceptibility to ciprofloxacin among food animals and humans in Korea. J. Clin. Microbiol. 49:2671-2675. 

  34. Tamang MD, Oh JY, Seol SY, Kang HY, Lee JC, Lee YC, Kim J. 2007. Emergence of multidrug-resistant Salmonella enterica serovar Typhi associated with a class 1 integron carrying the dfrA7 gene cassette in Nepal. Int. J. Antimicrob. Agents 30:330-335. 

  35. Tian G, Wang H, Zou L, Tang J, Zhao Y, Ye M, Yang X. 2009. Detection of CTX-M-15, CTX-M-22, and SHV-2 extended-spectrum β-lactamases (ESBLs) in Escherichia coli fecal-sample isolates from pig farms in China. Foodborne Pathog. Dis. 6: 297-304. 

  36. Tofteland S, Haldorsen B, Dahl KH, Simonsen GS, Steinbakk M, Walsh TR, Sundsfjord A. 2007. Effects of phenotype and genotype on methods for detection of extended-spectrum-β-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J. Clin. Microbiol. 45: 199-205. 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로