$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Groundwater Ages and Flow Paths at a Coastal Waste Repository Site in Korea, Based on Geochemical Characteristics and Numerical Modeling 원문보기

지질공학 = The journal of engineering geology, v.26 no.1, 2016년, pp.1 - 13  

Cheong, Jae-Yeol (Korea Radioactive Waste Agency) ,  Hamm, Se-Yeong (Division of Earth Environmental System, Pusan National University) ,  Koh, Dong-Chan (Korea Institute of Geoscience and Mineral Resources) ,  Lee, Chung-Mo (Division of Earth Environmental System, Pusan National University) ,  Ryu, Sang Min (Division of Earth Environmental System, Pusan National University) ,  Lee, Soo-Hyoung (Korea Institute of Geoscience and Mineral Resources)

Abstract AI-Helper 아이콘AI-Helper

Groundwater flow paths and groundwater ages at a radioactive waste repository located in a coastal area of South Korea were evaluated using the hydrochemical and hydrogeological characteristics of groundwater, surface water, rain water, and seawater, as well as by numerical modeling. The average gro...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

제안 방법

  • Numerical modeling was conducted to evaluate the distribution of head, groundwater flow paths, and groundwater travel times in the study area, and to solve for the concentrations of solute in groundwater. The commonly used groundwater model MODFLOW (McDonald and Harbaugh, 1988) was incorporated into the Visual MODFLOW package or Groundwater Modeling System (GMS) software.
  • The distribution of hydraulic conductivity in bedrock was determined by a kriging technique, using an exponential semivariogram. Using this approach, the hydrogeological model was conceptualized in terms of water infiltration in the hydraulic soil domain (HSD), primary groundwater flow through pervious fractures in bedrock (HCD), slow groundwater flow through minor fractures in bedrock (HRD), and discharge to streams and to the sea (Fig. 1).

이론/모형

  • 3). Average recharge values of groundwater, calculated using the groundwater level fluctuation method, ranged from 194 mm/a at HSD to 237 mm/a at HCD.
  • Concentrations of 222Rn in groundwater and seawater were measured using a radon detector, according to the method of Lee and Kim (2006). Water samples were collected in 1 L bottles for groundwater analysis and in 4 L bottles for seawater analyses, taking care to prevent leakage of 222Rn from the bottles and the generation of air bubbles.
  • Calibration of the model was performed by matching observed groundwater levels at monitoring wells (DB1-2, DB1-6, SS-5, RB-1, IJ, and KB-2) and simulated levels in the steady state condition. During model calibration, the boundary conditions inside the model area, hydraulic conductivity, and groundwater recharge were adjusted from their initial values so as to reach the error limits of actual values, using a trial-and-error method. The calibration between observed and calculated groundwater levels resulted in a simulation that matched observations at a 95% confidence level, represented by a correlation coefficient of 0.
  • MODFLOW can treat anisotropic and heterogeneous 3-D flows with constant density, using a finite difference method. The Visual MODFLOW package (version 4.2 by Schlumberger) was used to simulate groundwater flow paths and groundwater ages in the study area, assuming assumed piston flow (no dispersion).
본문요약 정보가 도움이 되었나요?

참고문헌 (27)

  1. Bethke, C. M. and Johnson, T. M., 2008, Groundwater age and groundwater age dating, Annual Reviews of Earth and Planetary Science, 36, 121-152. 

  2. Bieniawski, Z., 1979, The geomechanics classification in rock engineering applications, 4th ISRM Congress. International Society for Rock Mechanics. 

  3. Cherry, J., Grisak, G., and Jackson, R., 1974, Hydrogeological factors in shallow subsurface radioactive waste management in Canada, Proceedings, International Conference on Land for Waste Management, Ottawa, Canada, 131-146. 

  4. Chwae, U. C., Hwang, J. H., Yun, U., and Kim, D. H., 1988, Geologic map of Eoil area. Korea Institute of Energy and Resources. 

  5. Cook, P. G., Favreau, G., Dighton, J. C., and Tickell, S., 2003, Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers, Journal of Hydrology, 277, 74-88, doi: 10.1016/S0022-1694(03)00087-8. 

  6. Cook, P. G. and Solomon, D. K., 1997, Recent advances in dating young groundwater: Chlorofluorocarbons, H-3/He-3 and Kr-85, Journal of Hydrology, 191, 245-265, doi: Doi 10.1016/S0022-1694(96)03051-X. 

  7. Epstein, S. and Mayeda, T., 1953, Variation of O 18 content of waters from natural sources, Geochimica et Cosmochimica Acta, 4, 213-224. 

  8. Hwang, J., Kihm, Y., Kim, Y., and Song, K., 2007, Tertiary hydroexplosion at Bonggil-ri, Yangbuk-myeon, Gyeongju, Journal of Geological Society of Korea, 43, 453-462. 

  9. IAEA, 1999, Hydrogeological Investigation of Sites for the Geological Disposal of Radioactive Waste. 

  10. IAEA, 2001, Characterization of Groundwater Flow for Near-Surface Disposal Facilities. 

  11. KHNP Corporation, 2006, Report on Safety Analysis of a Low/Intermediate Level Radioactive Waste Repository. 

  12. Kim, J. and Yeh, G., 2004, COFAT3D: A Finite Element Model for Fully Coupled Groundwater Flow and Solute Transport in Three-Dimensional Saturated-Unsaturated Porous and Fractured Media, Version 1.0. Technical Report, No. GGEL-2004-12, Geological and Groundwater Engineering Laboratory, School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea, 404 p. 

  13. Koh, D. -C., Choi, B. -K., and Kim, Y. -J., 2007, Experimental Evaluation of an Analytical Method for Chlorofluorocarbons (CFSs) in Air and Water Using Gas Chromatography, Economic and Environmental Geology, 40, 129-140. 

  14. Koh, D. C., Ha, K., Lee, K. S., Yoon, Y. Y., and Ko, K. S., 2012, Flow paths and mixing properties of groundwater using hydrogeochemistry and environmental tracers in the southwestern area of Jeju volcanic island, Journal of Hydrology, 432, 61-74, doi: 10.1016/j.jhydrol.2012.02.030. 

  15. Lee, J. M. and Kim, G., 2006, A simple and rapid method for analyzing radon in coastal and ground waters using a radon-in-air monitor, Journal of Environmental Radioactivity, 89, 219-228, doi: 10.1016/j.jenvrad.2006.05.006. 

  16. Lee, K. and Chung, J., 1997, Stable isotopic variation of precipitation in Pohang, Korea, Economic and Environmental Geology, 30, 321-325. 

  17. Lee, K. -S., Woo, N. C., and Kim, K., 2001, Factors controlling stable isotope composition of precipitation in Northeast Asia, Journal of Geological Society of Korea, 37, 183-192. 

  18. McDonald, M. G. and Harbaugh, A. W., 1988. A modular three-dimensional finite-difference ground-water flow model, Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6, Chapter A1, 586 p. 

  19. Morrison, J., Brockwell, T., Merren, T., Fourel, F., and Phillips, A.M., 2001, On-line high-precision stable hydrogen isotopic analyses on nanoliter water samples, Analytical Chemistry, 73, 3570-3575, doi: 10.1021/ac001447t. 

  20. Oh, C. and Kim, J., 2008, Three-dimensional numerical simulation of groundwater flow and salt and radionuclide transport at a low and intermediate level radioactive waste disposal site in Gyeongju, Korea. Journal of Geological Society of Korea, 44, 489-505. 

  21. Ok, S. -I., Hamm, S. -Y., Lee, Y. -W., Cha, E. -J., Kim, S. -H., Kim, I. -S., and Khim, B. -K., 2011, Characterizing groundwater discharge and radon concentration in coastal waters, Busan City, Journal of Soil and Groundwater Environment, 16, 53-66. 

  22. Papadopulos, S. S. and Winograd, I. J., 1974, Storage of Low-Level Radioactive Wastes in the Ground Hydrogeologic and Hydrochemical Factors (with an Appendix on the Maxey Flats, Kentucky, Radioactive Waste Storage Site: Current Knowledge and Data Needs for a Quantitative Hydrogeologic Evaluation), Geological Survey, Reston, VA (USA). 49 p. 

  23. Park, K. -W., Ji, S. -H., Kim, C. -S., Kim, K. -S., and Kim, J. -Y., 2008, Numerical simulation of groundwater flow in LILW Repository site: I. Groundwater flow modeling, Journal of Nuclear Fuel Cycle and Waste Technology (JNFCWT), 6, 265-282. 

  24. Seo, J. M., Noh, M., Chang, C. J., and Yun, K. H., 2009, Status of the Psha in Korea for nuclear power plant sites, Nuclear Engineering and Technology, 41, 1255-1262. 

  25. Weigel, F., 1978, Radon, Chemiker-Zeitung, 102, 287-299. 

  26. Yi, S. P., Ma, H. Y., Zheng, C. M., Zhu, X. B., Wang, H. A., Li, X. S., Hu, X. L., and Qin, J. B., 2012, Assessment of site conditions for disposal of low- and intermediate-level radioactive wastes: A case study in southern China, Science of the Total Environment, 414, 624-631, doi: 10.1016/j.scitotenv. 2011.10.060. 

  27. Yoon, Y., Lee, K. Y., and Ko, K. S., 2010, C-14 and H-3 contents in the groundwater around radioactive repository site in Korea, Journal of Radioanalytical and Nuclear Chemistry, 284, 591-595, doi: 10.1007/s10967-010-0504-x. 

저자의 다른 논문 :

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로