$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

탄성파 속도를 활용한 토석류 위험지역의 표토층 두께 결정
Estimating Soil Thickness in a Debris Flow using Elastic Wave Velocity 원문보기

지질공학 = The journal of engineering geology, v.26 no.1, 2016년, pp.143 - 152  

민대홍 (대전대학교 건설안전방재공학과) ,  박충화 (대전대학교 건설안전방재공학과) ,  이종섭 (고려대학교 건축.사회환경공학부) ,  윤형구 (사회환경공학부)

초록
AI-Helper 아이콘AI-Helper

토석류 지반의 안정성은 일반적으로 표토층의 중량, 점착력, 사면의 각도 그리고 내부 마찰각 등의 물성치를 통해서 예측된다. 그 중 표토층의 중량은 표토층 깊이와 단위중량으로 추정할 수 있으며, 이때 광범위한 지역에서 표토층 깊이를 예측하는 것이 선행적으로 필요하다. 본 연구에서는 탄성파 탐사를 통해 표토층 깊이를 추정하고자 하였으며, 표토층 깊이를 예측할 수 있는 속도 범위 결정방법도 함께 제시하고자 하였다. 대상지역은 세종시 인근의 토석류 발생지역으로 전체적인 표토층 깊이를 예측하기 위하여 총 4개의 측선에서 속도 분포를 관찰하였다. 또한 토석류 위험 지역에서의 표토층 깊이를 알기 위하여 동적 콘관입(dynamic cone penetration) 시험도 함께 실시하였으며, 총 18개의 원위치 시험을 수행하였다. 탄성파 탐사 결과 대상지역은 총 3~4개의 지층으로 구성되어 있으며, 기존의 속도값을 통해 표피심도를 예측하였다. 기존 속도 기준 값으로 예측된 결과는 DCP 결과와 큰 차이를 보였으며, 차이를 감소시키고 신뢰성을 높이기 위해 새로운 속도 기준값을 제시하였다. 이와 같은 결과는 표피심도를 예측하기 위하여 기존 기준 값을 현장 조건에 맞게 조절해야 함을 암시하며, 추가적인 실험으로 더욱 정밀한 기준값을 제시할 수 있을 것으로 사료된다.

Abstract AI-Helper 아이콘AI-Helper

To estimate the stability of a debris flow it is necessary to know the mass of surface soil, cohesion, slope, and friction angle. Given that the mass of surface soil is a function of soil thickness and mass density, it is important to obtain reliable estimates of soil thickness across a wide area. T...

주제어

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 논문은 표토층 깊이 산정을 위해 활용한 탄성파 탐사의 개요에 대해 서술하였으며, 신뢰성 검증을 위한 동적콘관입(dynamic cone penetration: DCP)시험의 방법론적인 부분도 소개하였다. 최종적으로 두 가지 기법을 통해 예측된 표토층에 대해 비교 및 고찰하였으며, 탄성파 속도를 활용하여 기존 제안 값 외에 새로운 기준 값도 제시하였다.
  • 따라서 표토층이 공간적으로 다양하고 지반의 불확실성을 고려하여 광범위한 지역의 표토층 두께를 산정할 수 있는 기법이 필요한 시점이다. 본 연구에서는 탄성파 탐사를 이용하여 광범위한 지역에서의 표토층 깊이를 예측하고자 하였으며, 표토층으로 추정할 수 있는 속도범위 기준 값도 제시하고자 하였다.
  • 탄성파 탐사로 결정된 표피심도의 신뢰성을 증대시키고 위와 같은 차이를 줄이고 위하여 탄성파 탐사의 기준 값을 0.7km/s에서 새롭게 변경하고자 하였다. 사면은 연약지반과 달리 추가적인 지반보강의 이력이 없고 자연상태의 풍화 및 퇴적된 지층을 이루고 있다.
본문요약 정보가 도움이 되었나요?

참고문헌 (15)

  1. ASTM D6951 / D6951M-09, 2015, Standard Test Method for Use of the Dynamic Cone Penetrometer in Shallow Pavement Applications, ASTM International, West Conshohocken, PA, 2015, www.astm.org. 

  2. Bowles, J. E., 1997, Foundation analysis and design, 5th edition. McGraw-Hill International Edition. 

  3. Byun, Y. H., Yoon, H. K., Kim, Y. S., Hong, S. S., and Lee, J. S., 2014, Active layer characterization by instrumented dynamic cone penetrometer in Ny-Alesund, Svalbard, Cold Regions Science and Technology, 104(105), 45-53. 

  4. Cho, S. B., 2014, Research on slope stability analysis of colluvium -Sanbangsan regional research center of Jeju Island, Master's thesis, The University of Seoul. 

  5. Dietrich, W. E., Reiss, R., Hsu, M. L., and Montgomery, D. R., 1995, A process-based model for colluvial soil depth and shallow landsliding using digital elevation data, Hydrological processes, 9(3), 383-400. 

  6. Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C., 1999, Cosmogenic nuclides, topography, and the spatial variation of soil depth, Geomorphology, 27(1), 151-172. 

  7. Heimsath, A. M., Dietrich, W. E., Nishiizumi, K., and Finkel, R. C., 2001, Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range, Earth Surface Processes and Landforms, 26(5), 531-552. 

  8. Hong, W. P., Kim, J. H., Ro, B. D., and Jeong, G. C., 2009, Case study on application of geophysical survey in the weathered slope including core stones, The Journal of Engineering Geology, 19(1), 88-98. 

  9. Kuriakose, S. L., Devkota, S., Rossiter, D. G., and Jetten, V. G., 2009, Prediction of soil depth using environmental variables in an anthropogenic landscape, a case study in the Western Ghats of Kerala, India, Catena, 79(1), 27-38. 

  10. Lee, K. M., Kim, H., Lee, J. H., Seo, Y. S., and Kim, J. S., 2007, Analysis on the Influence of Groundwater Level Changes on Slope Stability using a Seismic Refraction Survey in a Landslide Area, The Journal of Engineering Geology, 17(4), 545-554. 

  11. Meyer, M. D., North, M. P., Gray, A. N., and Zald, H. S., 2007, Influence of soil thickness on stand characteristics in a Sierra Nevada mixed-conifer forest, Plant and Soil, 294(1-2), 113-123. 

  12. Mohammadi, S. D., Nikoudel, M. R., Rahimi, H., and Khamehchiyan, M., 2008, Application of the Dynamic Cone Penetrometer (DCP) for determination of the engineering parameters of sandy soils, Engineering Geology, 101(3), 195-203. 

  13. Montgomery, D. R. and Dietrich, W. E., 1994, A physically based model for the topographic control, Water Resources Research, 30(4), 1153-1171. 

  14. Trustrum, N. A. and De Rose, R. C., 1988, Soil depth-age relationship of landslides on deforested hillslopes, Taranaki, New Zealand, Geomorphology, 1(2), 143-160. 

  15. Song, B. W., Yoon, H. S., and Kim, S. M., 2013, In-Situ Experiment Method on Evaluation of Debris Flow, Journal of the Korean Geo-Environmental Society, 14(7), 31-38. 

저자의 다른 논문 :

LOADING...

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로