$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

초록이 없습니다.

AI 본문요약
AI-Helper 아이콘 AI-Helper

* AI 자동 식별 결과로 적합하지 않은 문장이 있을 수 있으니, 이용에 유의하시기 바랍니다.

문제 정의

  • 본 학술기사에서 제시하고 있는 내용은 지진피해 경감을 위한 사전 보강의 관점에서의 조치계획에 중점을 두고 있다. 본고에서는 물공급시설의 지진재해 신뢰성 제고를 위한 관로 최적 설계 프로그램인 REVAS. NET_Design (Reliability EVAluation model of Seismic hazard for water supply NETworks_Design)의 이론적 배경과 구동절차에 대해 설명하고, 간단한 적용 예를 소개하고자 한다.
  • 일반적인 관로 시스템 최적설계는 모든 절점의 최소요구수두 기준을 만족시키는 동시에 관로 공사비용을 최소화하는 것을 목적으로 한다. 따라서 본 연구에서는 식 (2)와 같이 최소압력 기준과 공사비용을 모두 제약조건으로 고려하였다.
  • 따라서 본 연구에서는 식 (2)와 같이 최소압력 기준과 공사비용을 모두 제약조건으로 고려하였다. 즉, 정상상태 시 모든 절점이 식 (2a)에 의해 최소 압력 기준을 반드시 만족해야 하며, 이와 동시에 식 (2b)와 같은 제한된 공사비 내에서 최대의 지진재해에 대한 신뢰성을 나타내는 관경의 조합을 찾아내는 것이 본 모형의 목적이다.

가설 설정

  • 따라서 해당 관망의 중요도와 과거 지진이력 등을 바탕으로 적절한 지진의 강도와 위치가 설정되어야 한다. 본 연구에서는 일반적인 라이프 라인의 설계기준 (M 6 ~ M 6.5)를 초과하는 강도 M 7을 설계지진 강도로 설정하였으며, 위치의 경우 과거 적용지역에서 일어난 지진이 같은 위치에서 발생할 수 있다는 가정 하에, 과거 발생 위치자료를 바탕으로 최적설계를 수행하였다.
본문요약 정보가 도움이 되었나요?

질의응답

핵심어 질문 논문에서 추출한 답변
ReHS의 가장 큰 특징은? HS가 갖는 최적해 탐색 후반기의 탐색 속도와 관련된 문제를 해결하기 위해 ReHS에서는 HMCR과 PAR 적용 방법에 변화를 준다. ReHS의 가장 큰 특징은 반복계산과정이 진행됨에 따라 HMCR과 PAR값에 점차 변화를 주는 것과 다수의 화음과 매개변수에 대해 HMCR과 PAR을 적용하는 것이다. 일반적으로 HS에서는 HMCR은 0.
본 연구에서 사용된 목적함수와 제약조건은? 본 연구에서 사용된 목적함수와 제약조건은 다음과 같다. 목적함수는 식 (1)과 같이, 신뢰성 인자로 상수관망 시스템에 적합하다고 알려진 System Serviceability (S S )를 최대화 하는 것으로 설정하였다. S S 는 지진 재해에 의한 시스템의 공급성을 평가하기 위한 인자로, 시스템 전체의 요구 기본 수요량 (Required demand)에 대한 실제 공급 가능량 (Available demand)의 비로 나타낸다. 이 값은 최소 0, 최대 1의 값을 가질수 있으며, 0의 값은 지진이 발생할 경우 요구되는 수요량을 전량 공급할 수 없음을 의미하며, 1의 값은 비정상상황의 발생 없이 요구량 전부가 공급될 수 있음을 의미한다.
시스템의 신뢰도란? 그 결과를 정량화하기 위하여 신뢰성 인자를 사용하게 된다. 일반적으로 다양한 분야에서 광의적 개념으로 사용되고 있는 시스템의 신뢰도 (Reliability)는 시스템이 정상적으로 작동을 할 확률을 의미한다. 본 연구에서 사용된 목적함수와 제약조건은 다음과 같다.
질의응답 정보가 도움이 되었나요?

참고문헌 (33)

  1. 국민안전처 (2012). 2012년도 기존 공공시설물 내진보강대책 추진결과 공시. 

  2. 유도근, 강두선, 김중훈 (2013) 상수관망 지진재해 신뢰성 평가 모형 - REVAS.NET. 한국수자원학회지-물과 미래, 제46권, 제2호, pp. 64-72. 

  3. 유도근, 강두선, 김중훈 (2014) 상수관망 시스템의 지진재해 위험도 산정 프로그램 개발. 2014년 한국방재학회 학술발표회. 

  4. 유도근, 강두선, 김중훈 (2015) 상수도시스템 정보를 이용한 지진재해 신뢰성 산정 모형개발. 한국스마트워터그리드학회 2015년도 춘계학술대회. 

  5. 백천우 (2002) ReHS를 이용한 상수관망 최적 개량 의사결정 시스템의 개발. 석사학위논문, 고려대학교. 

  6. 한국상하수도협회 (2010). 상수도시설기준. 환경부. 

  7. Ballantyne, D. B., Berg, E., Kennedy, J., Reneau, R, and Wu, D. (1990) Earthquake Loss Estimation Modeling of the Seattle Water System. Technical Report, Kennedy/Jenks/Chilton, Federal Way, WA. 

  8. Bonneau, A. L. (2008) Water Supply Performance During Earthquakes and Extreme Events. Ph D. thesis, School Civil and Environmental Engineering, Cornell University, Ithaca, New York. 

  9. Bonneau, A. L. and O'Rourke, T. D. (2009) Water Supply Performance During Earthquakes and Extreme Events, Technical Report MCEER-09-0003, University of Buffalo, State University of New York, New York. 

  10. Eguchi, R. T., Taylor, C. E., and Hasselman, T. K. (1983) Earthquake Vulnerability Models for Water Supply Components. Technical Report No. 83-1396-2c. Prepared for the National Science Foundation, J. H. Wiggins Company, Redondo Beach, CA. 

  11. Geem, Z. W., Kim, J. H., and Loganathan, G. V. (2001) A New Heuristic Optimization Algorithm: Harmony Search. Simulation, Vol. 76, No. 2, pp. 60-68. 

  12. GIRAFFE (2008) GIRAFFE User's Manual. School of Civil and Environmental Engineering, Cornell University, Ithaca, NY. 

  13. Hall, W. and Newmark, N. (1977) Seismic Design Criteria for Pipelines and Facilities. Current State of Knowledge of Lifeline Earthquake Engineering. ASCE, New York, pp. 18-34. 

  14. Hwang, H., Lin, H., and Shinozuka, M. (1998) Seismic Performance Assessment of Water Delivery Systems. Journal of Infrastructure Systems, Vol. 4, pp. 118-125 

  15. Hwang, R. N. and Lysmer, J. (1981) Response of Buried Structures to Traveling Waves. Journal of Geotechnical Engineering Division, ASCE, Vol. 107, No. GT2, pp. 183-200. 

  16. Kim, J. H., Geem, Z. W., and Kim, E. S. (2001) Parameter Estimation of the Nonlinear Muskingum Model using Harmony Search. Journal of the American Water Resources Association, Vol. 37, No. 5, pp. 1131-1138. 

  17. Kim, J. H., Baek, C. W., Jo, D. J., Kim, E. S., and Park, M. J. (2004) Optimal planning model for rehabilitation of water networks. Water Science & Technology: Water Supply, Vol. 4, No. 3, pp. 133-147. 

  18. K-water (2010) Construction Cost Estimation for Water Distribution System. Korea Water Resources Corporation, Report. 

  19. Liu, G.Y., Chung, L.L., Yeh, C.H., Wang, R.Z., Chou, K.W., Hung, H.Y., Chen, S.A., Chen, Z.H., and Yu, S.-H. (2010) A Study on Pipeline Seismic Performance and System Post-Earthquake Response of Water Utilities (1/2). Technical Report MOEA-WRA-0990095, Water Resource Agency, MOEA, Taipei. 

  20. Liu, G.Y., Chung, L.L., Huang, C.W., Yeh, C.H., Chou, K.W., Hung, H.Y., Chen, Z.H., Chou, C.H., and Tsai, L.C. (2011) A Study on Pipeline Seismic Performance and System Post-Earthquake Response of Water Utilities (2/2). Technical Report MOEA-WRA-1000090, Water Resource Agency, MOEA, Taipei. 

  21. Markov, I., Mircea G., and O'Rourke, T. (1994) An Evaluation of Seismic Serviceability of Water Supply Networks with Application to the San Francisco Auxiliary Water Supply System. 

  22. Rossman, L. A. (2000). EPANET 2 User's Manual. EPA (U.S. Environmental Protection Agency), Cincinnati, OH. 

  23. Shi, P. (2006) Seismic Response Modeling of Water Supply Systems. Ph.D. Dissertation, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY. 

  24. Shi, P., O'Rourke, T. D., and Wang, Y. (2006) Simulation of Earthquake Water Supply Performance. Proceeding of 8th National Conference on Earthquake Engineering, Paper No. 8NCEE-001295, EERI, Oakland, CA. 

  25. Shinozuka, M, Tan, R. Y. and Toike, T. (1981) Serviceability of Water Transmission Systems under Seismic Risk, Lifeline Earthquake Engineering, the Current State of Knowledge, ASCE, New York, NY. 

  26. Shinozuka, M., Hwang, H., and Murata, M. (1992) Impact on Water Supply of a Seismically Damaged Water Delivery System, Lifeline Earthquake Engineering in the Central and Eastern U.S., TCLEE Monograph 5, pp. 43-57. 

  27. Shinozuka, M., Rose, A., and Eguchi, R. T. (1998) Engineering and Socioeconomic Impacts of Earthquakes. Monograph Series 2. Multidisciplinary Center for Earthquake Engineering Research, Buffalo, NY. 

  28. Wang, Y. (2006) Seismic Performance Evaluation of Water Supply Systems. Ph.D. Dissertation, School of Civil and Environmental Engineering, Cornell University, Ithaca, NY. 

  29. Wang, Y., and O'Rourke, T. D. (2007) Characterizations of seismic risk in Los Angeles water supply system. China-Japan-US Symposium on Lifeline Earthquake Engineering. 

  30. Whitman, R. V. and Hein, K. H. (1977) Damage Probability for a Water Distribution System, Proceedings of the ASCE TCLEE Specialty Conference on Lifeline Earthquake Engineering, August 31, pp. 410-423. 

  31. Wright, J. P., and Takada, S. (1980) Earthquake Response Characteristics of Jointed and Continuous Buried Lifelines. Grant Report No. 15, Prepared for National Science Foundation by Weidlinger Associates, Grant No. PFR 78-15049. 

  32. Yoo, D. G., Jung, D., Kang, D., Kim, J. H., and Lansey, K (2016a) Seismic Hazard Assessment Model for Urban Water Supply Networks." Journal of Water Resources Planning and Management, ASCE, Vo. 142, No. 2, DOI: 10.1061/(ASCE)WR.1943-5452.0000584. 

  33. Yoo, D. G., Kang, D. Kim, J. H. (2016b) Optimal Design of Water Supply Networks for Enhancing Seismic Reliability. Reliability Engineering & System Safety. Vol. 146, No. 2, 79-88. 

저자의 다른 논문 :

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로